Electronic Supplementary Information (ESI)

Electronic structure exquisite restructuring of cobalt phosphide via rationally controlling iron induction for water splitting at industrial condition

Ziting Li,^a Peng Zhou,^a Mingyan Zhang,^a Haochen Zhang,^a Yongyi Zhang,^a Dan Han,^a Xiaoshuang Chen^{*ab}

^aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China

^bHeilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary,

Qiqihar University, Qiqihar 161006, P. R. China

*Corresponding author: Tel.: +86 13836265698

E-mail address: cxshuang1988@163.com (X. S. Chen)

Fig. S1 XRD pattern of Fe-Co $_3O_4$ product.

Fig. S2 (a, b) SEM images of CoP product.

Fig. S3 (a, b) SEM images of CoP product prepared at 120 °C.

Fig. S4 (a, b) SEM images of CoP product prepared at 180 °C.

Fig. S5 (a, b) SEM images of CoP product prepared for 3.0 h.

Fig. S6 (a, b) SEM images of CoP product prepared for 8.0 h.

Fig. S7 EDX spectrum of Fe-CoP product.

Fig. S8 OER performance of CoP products prepared at different reaction temperatures.

(a) Polarization, (b) Tafel, (c) C_{dl} and (d) Nyquist curves.

Fig. S9 OER performance of CoP products prepared for different reaction time. (a) Polarization, (b) Tafel, (c) C_{dl} and (d) Nyquist curves.

Fig. S10 OER cyclic voltammograms of CoP products prepared at different reaction

temperatures.

Fig. S11 OER cyclic voltammograms of CoP products prepared at different reaction time.

Fig. S12 OER cyclic voltammograms of (a) Fe-CoP and (b) CoP products at different scan rates.

Fig. S13 OER ECSA and RF comparison of Fe-CoP and CoP products.

Fig. S14 OER performance of Fe-CoP products prepared with different Fe contents.

(a) Polarization, (b) Tafel, (c) C_{dl} and (d) Nyquist curves.

Fig. S15 OER cyclic voltammograms of Fe-CoP products prepared with different Fe contents.

Fig. S16 OER cyclic voltammograms of Fe-CoP and CoP products in 1.0 M PBS with the scan rate of 100 mV s⁻¹.

Fig. S17 I-t curve of Fe-CoP product at 100 mA cm⁻².

Fig. S18 XRD pattern of Fe-CoP after OER.

Fig. S19 XPS analysis of Fe-CoP after OER. (a) Survey spectrum, high resolution (b)

Co 2p, (c) P 2p, (d) Fe 2p XPS spectra.

Fig. S20 HER performance of CoP products prepared at different reaction temperatures. (a) Polarization, (b) Tafel, (c) C_{dl} and (d) Nyquist curves.

Fig. S21 HER performance of CoP products prepared for different reaction time. (a)

Polarization, (b) Tafel, (c) C_{dl} and (d) Nyquist curves.

Fig. S22 HER performance of Fe-CoP products prepared with different Fe contents.

(a) Polarization, (b) Tafel, (c) C_{dl} and (d) Nyquist curves.

Fig. S23 HER cyclic voltammograms of CoP products prepared at different reaction

temperatures.

Fig. S24 HER cyclic voltammograms of CoP products prepared at different reaction time.

Fig. S25 HER cyclic voltammograms of (a) Fe-CoP and (b) CoP products at different scan rates.

Fig. S26 HER cyclic voltammograms of Fe-CoP products prepared with different Fe contents.

Fig. S27 HER ECSA and RF comparison of Fe-CoP and CoP products.

Fig. S28 HER cyclic voltammograms of Fe-CoP and CoP products in 1.0 M PBS with the scan rate of 100 mV s⁻¹.

Fig. S29 XPS analysis of Fe-CoP after HER. (a) Survey spectrum, high resolution (b)

Co 2p, (c) P 2p, (d) Fe 2p XPS spectra.

Fig. S30 Charge density distribution diagrams of Fe-CoP and CoP.

Fig. S31 Evolution step and adsorbent model of CoP for OER.

Fig. S32 Evolution step and adsorbent model of CoP for HER.

Catalysts	Overpotential (mV)	Ref.	
Fe-CoP	249	This work	
Zn _{0.1} -CoP	290	J. Alloys Compd. 2023, 934, 167828	
Co ₂ P-FeP@C-15	260	J. Colloid Interface Sci. 2024, 653, 857-866	
MoP@NPC	313		
MoP/CoMoP2@NPC	284	J. Mater. Chem. A 2024, 12, 1243	
Fe-CoP	269	Int. J. Hydrogen Energy 2024, 90, 1401-	
		1410	
Hf-XO-CoP	292		
СоР	388	Inorg. Chem. 2024, 63, 13093-13099	
Fe-CoP NFs	255	Energy Environ. Mater. 2024, 7, e12747	
Fe-CoP NCs	300		
CoP/Ni ₂ P@NHPC	275	J. Electroanal. Chem. 2024, 961, 118224	
MoCoFeP	250	RSC Adv. 2024, 14, 10182-10190	
Fe-CoP/NCNF-350	292	Int. J. Hydrogen Energy 2024, 63, 556-565	
CN/Fe-CoS ₂	304	ACS Appl. Nano Mater. 2024, 7, 9685-9695	
H-Fe ₃ O ₄	287	J. Colloid Interface Sci. 2024, 657, 684-694	

 Table S1 Comparison of OER performance for Fe-CoP with recently reported

 electrocatalysts.

Catalysts	Overpotential	Ref.	
	(mV)		
Fe-CoP	78.5	This work	
NF/Ni ₂ P/CoP-NN	90	Electrochim. Acta 2022, 426, 140768	
NF/Ni ₂ P	172		
Ni ₂ P/CoP@C-NSG	145	Mater. Today Sustainablity 2024, 25,	
		100677	
V-CoP	98		
СоР	149	Nanoscale Adv. 2023, 5, 4133-4139	
Fe _{1.5} -CoP	115	Ionic 2022, 28, 2301-2307	
Fe ₁ -CoP	142		
O-CoP	125	Chem. Eur. J. 2023, 29, e202301252	
B-CoP/NC	158	New J. Chem. 2023, 47, 17333	
CoP@NCDs _{0.5} /NF	103		
CoP/NF	137	J. Cryst. Growth 2023, 624, 127430	
Ni-CoP/Co ₂ P	125	J. Solid State Chem. 2021, 301, 122299	
CoP/Co ₂ P	204		
Mo-CoP/Ti ₃ C ₂ T _x	117	ChemistrySelect 2022, 7, e202200254	

Table S2 Comparison of HER performance for Fe-CoP with recently reportedelectrocatalysts.

Catalysts	Voltage (V)	Ref.	
Fe-CoP	1.50	This work	
Mn-W-CoP/NF	1.57	Int. J. Hydrogen Energy 2024, 51, 276-284	
CoP/CNTs/CC	1.54	J. Colloid Interface Sci. 2023, 651, 172-181	
CoFe-P/NF-1	1.57	ACS Appl. Nano Mater. 2021, 4, 12083-12090	
CoO-CoP-NC	1.53	J. Mater. Chem. A 2023, 11, 3136	
NiSe ₂ /Ni ₂ P@FeP	1.554	J. Power Source 2020, 445, 227294	
H-Fe ₃ O ₄ @FeP@NC	1.69	J. Colloid Interface Sci. 2024, 657, 684-694	
N, Ce-NiCoP/NF	1.54	Nano Res. 2024, 17, 282-289	
Ni ₂ P-MoP@NC	1.54	J. Mater. Chem. A 2023, 11, 15033	
Co ₃ Mo ₃ N/Co ₄ N/Co	1.58	Angew. Chem. Int. Ed. 2024, 63, e202319239	
Co ₂ P-NCS	1.69	Small 2024, 20, 2308956	
Co-N-BP-CNTs/NF	1.52	J. Alloys Compd. 2024, 980, 173647	
Ir _n -CoMoPO _x	1.53	ACS Appl. Mater. Interfaces 2024, 16, 7141-	
		7151	
CoP ₂ /Co ₂ P@CNT-CC	1.55	ACS Appl. Mater. Interfaces 2022, 14, 56847-	
		56855	
V-CoP	1.59	Adv. Energy Mater. 2021, 11, 2101758	

Table S3 Comparison of overall water splitting performance for Fe-CoP with recentlyreported electrolyzers.

Catalysts	Atoms	Charge	ΔQ
СоР	P ₁	5.18	0.18
	P ₂	5.18	0.18
	Со	8.84	-0.16
Fe-CoP	P ₁	5.21	0.21
	P ₂	5.21	0.21
	Fe	7.73	-0.27

Table S4 Charge density distribution analysis and their diversities to purely ionic models (ΔQ).