Emerging Chalcogenide based van der Waals Heterostructures for Ultrathin Excitonic Solar Cells with enhanced Photo-conversion Efficiency

Ponnappa Kechanda Prasanna and Sudip Chakraborty*

Materials Theory for Energy Scavenging (MATES Lab), Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj - 211019

E-mail: sudipchakraborty@hri.res.in,sudiphys@gmail.com

Different possible heterostructure stacking order

Figure 1: Different stacking arrangements considered for structural optimization of heterobilayer.

(a) $\operatorname{ZrSe}_2:2H/\operatorname{HfSe}_2:2H$ (b) $\operatorname{ZrSe}_2:1T/\operatorname{HfSe}_2:2H$ (c) $\operatorname{ZrSe}_2:2H/\operatorname{HfSe}_2:1T$ (d) $\operatorname{ZrSe}_2:1T/\operatorname{HfSe}_2:1T$

Figure 2: Optimized geometry of hetero-bilayers with combination of different monolayers .

Figure 3: Schematic representation along the ac direction of hetero-bilayer (3 × 3 supercell), t is the distance between the layers.

Mechanical Stability

Monolayers

Figure 4: Total energy variation for monolayers with applied external strain. C_{11} and C_{12} are the elastic constants. The blue line shows the variation of total energy with biaxial strain, while the red line shows that of the uni-axial strain.

Heterostructure

Figure 5: Total energy variation for hetero-bilayer with applied external strain. C_{11} and C_{12} are the elastic constants. The blue line shows the variation of total energy with biaxial strain, while the red line shows that of the uni-axial strain.

Electronic Properties

Figure 6: Electrostatic potential average along the z axis and the work function.

Figure 7: Band structure of monolayers calculated using PBE.

Table 1: Deformation Potential E_{ex} and E_{hx} electrons and holes; Effective mass m_{e1} and m_{e2} of electrons, m_{h1} and m_{h2} of holes along two directions; and mobility μ_e , μ_h of electrons and holes, respectively in heterostructure.

Heterostructure	E_{ex}	E_{hx}	m_{e1}^{*}	m_{e2}^{*}	m_{h1}^{*}	m_{h2}^{*}	μ_e	μ_h
	(eV)	(eV)	(m_0)	(m_0)	(m_0)	(m_0)	$(\rm cm^2 V^{-1} s^{-1})$	$(\rm cm^2 V^{-1} s^{-1})$
$ZrSe_2:2H/HfSe_2:2H$	-3.60	-3.26	1.07	2.43	-1.11	-2.23	146.00	175.90
$ZrSe_2:1T/HfSe_2:2H$	-7.16	-6.50	0.83	1.60	-0.16	-0.17	63.23	2781.22
$ZrSe_2:1T/HfSe_2:1T$	-2.89	-8.73	0.25	1.84	-0.16	-0.17	1859.70	1469.80

 $ZrSe_2:2H/HfSe_2:1T$ has a very low band gap and shows a metallic behaviour for PBE calculation therefore finding deformation potential for the same is not feasible.

Figure 8: Three different possibilities of band alignment in semiconductor heterojunctions