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Figure S1. Different views of the calculated geometry of the metallo-porphyrin nanotube.
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PZn nanoring

Figure S2. (a) Optimised geometry of the PZn nanoring (unit-cell). (b) Frontier molecular orbitals (FMOs) calculated 

with DFT-PBE. Red corresponds to positive and blue to negative regions of the wave functions.
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PFe nanoring

Figure S3. (a) Optimised geometry of the PFe(II) nanoring (unit-cell). (b) Frontier molecular orbitals (FMOs) 

calculated with DFT-PBE. Red corresponds to positive and blue to negative regions of the wave functions.
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PFe-Cl nanoring

Figure S4. (a) Optimised geometry of the PFe(III)-Cl nanoring (unit-cell). (b) Frontier molecular orbitals (FMOs) 

calculated with DFT-PBE. Red corresponds to positive and blue to negative regions of the wave functions.
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Figure S5. shows the DFT-calculation of density of states (DOS) for the PFe nanotube by using (a) GGA-PBE 

functional, (b) GGA+U and (c) hybrid functional GGA-HSE06.
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Figure S6. shows the DFT-calculation of density of states (DOS) for the PFe-Cl nanotube by using (a) GGA-PBE 

functional, (b) GGA+U and (c) hybrid functional GGA-HSE06.



Thermoelectric properties of metallo-porphyrin nanotubes

The non-normalized probability distribution P(E) is defined by [1-3]

𝑃(𝐸) =‒ 𝑇(𝐸)
∂𝑓(𝐸)

∂𝐸
  ,                                                          (𝑆1)

where f(E) is the Fermi distribution function. The moments of P(E) are

𝐿𝑛 = ∫𝑑𝐸 𝑃(𝐸)(𝐸 ‒ 𝐸𝐹)𝑛.                                                (𝑆2)

The electrical conductance, G is given by the Landauer formula

𝐺 =
2𝑒2

ℎ
𝐿0 ,                                                                              (𝑆3)

where h is Planck’s constant. The normalised distribution ρ(x) is defined by ρ(x)=P(x)/L0. In terms of the 

moments Ln,  .
< 𝑥 >  =
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,      𝜎2 =  

𝐿2

𝐿0
‒

𝐿2
1

𝐿2
0

The thermopower (also known as the Seebeck coefficient S) is

𝑆 =‒
∆𝑉
∆𝑇

=
1

𝑒𝑇
 
𝐿1

𝐿0
.                                                                (𝑆4)

The electronic contribution to the thermal conductance (ke) is given by

𝑘𝑒 =
2
ℎ

1
𝑇

𝐿0   (𝐿2

𝐿0
‒

𝐿2
1

𝐿2
0
).                                                        (𝑆5)

The electronic contribution to figure of merit (ZTe) is

𝑍𝑇𝑒 = (𝑆2𝐺
𝑘𝑒

)𝑇                                                                                  (𝑆6)

For E close to EF, if T(E) varies only slowly with E on the scale of kB then these formulae take the form



𝐺(𝑇) ≈ (2𝑒2

ℎ )𝑇(𝐸𝐹) ,                                                               (𝑆7)

𝑆(𝑇) ≈‒ 𝛼𝑒 𝑇 (𝑑ln 𝑇(𝐸)
𝑑𝐸 )𝐸 = 𝐸𝐹

                                              (𝑆8)

𝑘𝑒 ≈ 𝐿0 𝑇𝐺                                                                                    (𝑆9)

where  is the Lorentz number. Equation (S8) shows that S is enhanced by increasing the 
𝛼 = (𝑘𝐵

𝑒 )2 
𝜋2

3

slope of ln T(E) near E = EF. Hence, it is of interest to explore whether it is possible to move step-
like feature in T(E) close to EF. In particular, in the present study, we will use one-dimensional 
organic nanostructures that can give rise to step-like feature in T(E), located asymmetrically relative 
to EF.

Strategies for increasing thermoelectric performance

To understand how transport resonances and quantum interference lead to high thermoelectric 
performance, we note that in the linear-response regime, the electric current I and heat current 

passing through a device is related to the voltage difference ∆V and temperature difference ∆T by �̇� 
[63]

( 𝐼
�̇�) =

2
ℎ(𝑒2𝐿0

𝑒
𝑇

𝐿1

𝑒𝐿1
1
𝑇

𝐿2)(∆𝑉
∆𝑇)                                                    (𝑆10) 

where T is the reference temperature and

𝐿𝑛 =
∞

∫
‒ ∞

(𝐸 ‒ 𝐸𝐹)𝑛𝑇(𝐸)( ‒
∂𝑓(𝐸,𝑇)

∂𝐸 )𝑑𝐸                                 (𝑆11)

In this expression e=-|e| is the electronic charge,  is the transmission coefficient for electrons of  𝑇(𝐸)
energy E, passing through the molecule from one electrode to the other and  is Fermi 𝑓(𝐸,𝑇)

distribution defined as  where  is Boltzmann’s constant. 𝑓(𝐸,𝑇) = [𝑒
(𝐸 ‒ 𝐸𝐹)/𝑘𝐵𝑇

+ 1] ‒ 1 𝑘𝐵



In this expression e=-|e| is the electronic charge,  is the transmission coefficient for electrons of  𝑇(𝐸)
energy E, passing through the molecule from one electrode to the other and  is Fermi 𝑓(𝐸,𝑇)

distribution defined as  where  is Boltzmann’s constant. 𝑓(𝐸,𝑇) = [𝑒
(𝐸 ‒ 𝐸𝐹)/𝑘𝐵𝑇

+ 1] ‒ 1 𝑘𝐵

When , equation (S10) yields for the electrical conductance  ,∆𝑇 = 0
𝐺 = (

𝐼
∆𝑉

)∆𝑇 = 0

𝐺 =     
2𝑒2

ℎ
𝐿0                                                                                (𝑆12)

Similarly when  equation (S10) yields for the Seebeck coefficient ,𝐼 = 0,
𝑆 =‒ (

∆𝑉
∆𝑇

)𝐼 = 0

𝑆 =
‒ 1

|𝑒|𝑇

𝐿1

𝐿0
                                                                      (𝑆13)

Equation (S10) can be rewritten in terms of the electrical conductance (G), thermopower (S), Peltier 
coefficient (∏), and the electronic contribution to the thermal conductance (κe):

(∆𝑉
�̇� ) = (1/𝐺 𝑆

∏ 𝜅𝑒)( 𝐼
∆𝑇)                                                                (𝑆14)

where 

Π =
‒ 1
|𝑒|

𝐿1

𝐿0
                                                                                               (𝑆15)

𝜅𝑒 =
2

ℎ𝑇(𝐿2 ‒
(𝐿1)2

𝐿0 )                                                                      (𝑆16)

From the above expressions, the electronic thermoelectric figure ZTe =S2GT/κe is given by

𝑍𝑇𝑒 =
(𝐿1)2

𝐿0𝐿2 ‒ (𝐿1)2
                                                                         (𝑆17)

Based on the above expressions, we now examine three strategies for increasing thermoelectric 
performance.

Strategy 1: Utilising a steep slope in T(E).



For E close to EF, if T(E) varies approximately linearly with E on the scale of kBT then   𝐿0 ≈  𝑇(𝐸𝐹),  

 and , where  is the Lorenz number given by 
𝐿1 ≈ (𝑒𝑇)2𝛼(𝑑𝑇(𝐸)
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formulae take the form [63]: 

𝐺 ≈ (2𝑒2

ℎ )𝑇(𝐸𝐹),                                                                     (𝑆18)

𝑆 ≈‒ 𝛼|𝑒|𝑇(𝑑 𝑙𝑛𝑇(𝐸)
𝑑𝐸 )𝐸 = 𝐸𝐹

,                                                    (𝑆19)

𝜅𝑒 ≈ 𝛼𝑇𝐺.                                                                           (𝑆20)

Equation (S19) demonstrates that S is enhanced by increasing the slope of ln T(E) and hence 
quantum-interference-induced resonances or other features in T(E) with steep slopes close to EF are 
desirable. To estimate what constitutes a “steep slope”, we note that the Wiedemann-Franz Law, 
(Equation S20) yields

𝑍𝑇𝑒 =
𝑆2

𝛼
                                                                (𝑆21)

Therefore in the low-temperature limit, if  , then we require , ie.  µV/K𝑍𝑇𝑒 > 1 𝑆2 >  𝛼 𝑆 >  150

Strategy 2: Utilizing resonances in T(E).
Insight into alternative strategies for maximising ZTe can be obtained by taking a ‘statistical’ view 
of Equations (S12, S13, S16 and S17), which demonstrates why the denominator of Equation (S17) 
must be positive from a mathematical viewpoint. If the Fermi energy of the reservoirs is EF, then it 

is convenient to introduce the non-normalised distribution  and the 
𝑃(𝐸) =‒ 𝑇(𝐸)

∂𝑓(𝐸)
∂𝐸

 

corresponding normalized distribution  . Then the mean of  is  
(𝐸) =

𝑃(𝐸)
𝐿0 (𝐸 ‒ 𝐸𝐹)

  and the variance is  . This yields < 𝐸 ‒ 𝐸𝐹 >  = ∫𝑑𝐸 𝜌(𝐸)(𝐸 ‒ 𝐸𝐹) 𝜎2 =  < (𝐸 ‒ 𝐸𝐹)2 >  ‒< 𝐸 ‒ 𝐸𝐹 > 2 

for Equation (S13)

𝑆 =
‒ 1

|𝑒|𝑇
< 𝐸 ‒ 𝐸𝐹 >  ,                                                                     (𝑆22)

Furthermore, Equation (S17) becomes



𝑍𝑇𝑒 =
< 𝐸 ‒ 𝐸𝐹 > 2

𝜎2
,                                                                      (𝑆23)

which is clearly positive.

The mean  and standard deviation  capture essential features regarding the shape of < 𝐸 ‒ 𝐸𝐹 >  𝜎

ρ(E) and P(E). Equations (S22) and (S23) reveal that S and  depend only on these shape 𝑍𝑇𝑒

parameters and are independent of . Only the electrical and electronic thermal conductances 𝐿0

depend on . This feature which can be traced to the fact that  and  describe 𝐿0
𝐺 =  

2𝑒2

ℎ
𝐿0 𝑘𝑒 =  

2𝐿0𝜎2

ℎ𝑇

the magnitudes of currents and therefore depend on the normalization  of P( ), whereas S and 𝐿0 𝜀

 involve only ratios. Clearly will be non-zero only if  is an 𝑍𝑇𝑒 < 𝐸 ‒ 𝐸𝐹 >  𝑃(𝐸) =‒ 𝑇(𝐸)
∂𝑓(𝐸)

∂𝐸

asymmetric function of  and since  is a symmetric function of ,  should (𝐸 ‒ 𝐸𝐹) ‒
∂𝑓(𝐸)

∂𝐸 (𝐸 ‒ 𝐸𝐹) 𝑇(𝐸)

be asymmetric with respect to . Examples of two candidate transmission functions are shown in 𝐸𝐹

Figure S7.

Figure S7. Two ideal transmission coefficients T. (a) Delta-function like T(E) and (b) Step-function like T(E). 

Figure S3a is relevant for structures, whose electronic density of states contains narrow resonances, 
such as single-molecule electrical junctions. Equation (S11) reveals that , when , which 𝑍𝑇𝑒 = ∞ 𝜎 = 0

occurs when  is proportional to a delta function [64] of the form , in which 𝑇(𝐸) 𝑇(𝐸) = 𝐴𝛿(𝐸 ‒ 𝐸0)

case, ,  and  is infinite. Similarly  and 𝜌(𝐸) = 𝛿(𝐸 ‒ 𝐸0) 𝑆 =
‒ 1

|𝑒|𝑇
(𝐸0 ‒  𝐸𝐹) 𝑍𝑇𝑒

𝐺 =
2𝑒2

ℎ
𝐴( ‒

∂𝑓(𝐸0)
∂𝐸0

)

. Thermal properties of a system with a delta-function-like transmission are shown in Figure 𝑘𝑒 = 0

S8.



Figure S8. Thermal properties of the delta-function like T(E), obtained with EF = 0. (a) conductance, (b) 

electronic thermal conductance, (c) thermopower and (d) total ZT by assuming a constant phonon thermal 

conductance. γ and σ are chosen to be 10.

Strategy 3: Utilising steps in T(E).

As alternative to using narrow transmission resonances, we now consider the step-like transmission 
shown in Figure S9, which occurs in periodic structures such as a crystalline lead, where T(E) is 
equal to the number of open channels and therefore changes in integer steps [65]. As a simple 
example, we now examine the thermopower and ZTe of a system with a model step-like transmission 
coefficient of the form: T(E) = A for E>E0 and T(E)=0 for E<E0, where A is an arbitrary constant 
defining the height of the step and E0 defines the position of the step. In this case, it is convenient to 
introduce the dimensionless parameter y = (E - EF )/kBT, so the Fermi function takes the form 
f(E)=(exp y + 1)-1 and write Equation (S11) in the form

𝐿𝑛 =   𝐴(𝑘𝐵𝑇)𝑛𝐼𝑛(𝑦0)                                                   (𝑆24)

where  y0 = (E0 - EF )/kBT,

 

𝐼𝑛(𝑦0) =
∞

∫
𝑦0

𝑑𝑦 [ ‒
𝑑𝑓
𝑑𝑦]𝑦𝑛                                 (𝑆25)



and . Clearly all moments depend only on the size of the step (ie the [ ‒
𝑑𝑓
𝑑𝑦] = 𝑒𝑦/(𝑒𝑦 + 1)2

dimensionless parameter A) and the dimensionless parameter y0, which defines the location of the 
step relative to the Fermi energy of the electrodes, in units of kBT. In terms of , 𝐼𝑛

. Plots of the dimensionless Fermi integrals  are 
< 𝐸 ‒ 𝐸𝐹 >  = 𝑘𝐵𝑇

𝐼1

𝐼0
,   𝜎2 = (𝑘𝐵𝑇)2[

𝐼2

𝐼0
‒

𝐼2
1

𝐼2
0

] 
𝐼𝑛(𝑦0)

shown below.

Figure S9. I0, I1 and I2 for a step-function like transmission coefficient.

Clearly =0 and =1, because . Also since 𝐼0(∞) 𝐼0( ‒ ∞)
𝐼0(𝑦0) =

∞

∫
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𝑑𝑦 [ ‒
𝑑𝑓
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 is odd, =0 and  is a maximum at . Furthermore,  and since [ ‒
𝑑𝑓
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𝜋2

3

, the slope of  vanishes at . As shown in Figure S0.[ ‒
𝑑𝑓
𝑑𝑦]𝑦2 = 0 𝑎𝑡 𝑦 = 0 𝐼2(𝑦0) 𝑦0 = 0

In terms of  the thermoelectric parameters become 𝐼𝑛(𝑦0)
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These equations show that the natural unit of G is , of S is and of is 

2𝑒2

ℎ
= 77µ𝑆

𝑘𝐵

𝑒
= 86 µ𝑉/𝐾   𝑘𝑒

at room temperature (ie 300K). Clearly G and  are both proportional to step 

2(𝑘𝐵)2𝑇

ℎ
= 173 𝑝𝑊/𝐾 𝑘𝑒

size A, whereas S and  are independent of A. Plots of the dimensionless thermopower  and 𝑍𝑇𝑒
𝑆 =

𝐼1

𝐼0

dimensionless electronic thermal conductance   are shown in Figure S10. 
𝑘𝑒 =  (𝐼2 ‒

𝐼2
1

𝐼0
)

Figure S10. Dimensionless thermopower  and dimensionless electronic thermal conductance 
𝑆(𝑦0) =

𝐼1

𝐼0

   and the electronic thermoelectric figure of merit .
𝑘𝑒 =  (𝐼2 ‒

𝐼2
1

𝐼0
)

𝑍𝑇𝑒

Obviously, since the moments  in Equation (S11) are linear in T(E), the above analysis can be 𝐿𝑛

applied to various combinations of steps. For example for the step-like transmission coefficient of 
the form: T(E) = B for E<E0 and T(E)=0 for E>E0, the relevant integrals are 

 and Equation (S24) is replaced by .
𝐽𝑛(𝑦0) =

𝑦0

∫
‒ ∞

𝑑𝑦 [ ‒
𝑑𝑓
𝑑𝑦]𝑦𝑛

𝐿𝑛 =  𝐵(𝑘𝐵𝑇)𝑛𝐽𝑛(𝑦0)



Figure S11. J0, J1 and J2 for a step-function like transmission coefficient. (These can be obtained from Figure 

S9 by symmetry).

Figure S12. Thermal properties of the step-function like T(E). (a) conductance, (b) electronic thermal 

conductance, (c) thermopower and (d) total ZT by assuming a constant phonon thermal conductance 

. γ and σ are chosen to be 10.300𝑝𝑊/𝐾

Figure S12 shows an example of a graphene nanoribbon with step-function-like electron transmission 
coefficient around the Fermi energy EF = 0 [65]. The structure is formed by two overlapping 
monolayer ribbons with hydrogen edge terminations, with the overlapping bilayer region containing 
a nanopore, whose edges are terminated by oxygen. Electrons flow from a left electrode connected 
to the top ribbon, to an electrode connected to the bottom ribbon, through the overlap region. Over 



the energy interval shown, there is one open scattering channel in the crystalline nanoribbons. In this 
case the oxygen-terminated pore blocks electron transmission over the energy interval 0 to 0.2 eV 
and an asymmetric step in T(E) arises from the asymmetry created by the presence of the oxygens.

We discussed some principles underpinning strategies for enhancing their thermoelectric 
performance. The latter include (a) taking advantage of steep slopes in T(E), (b) creating structures 
with delta-function-like transmission coefficients and (c) utilising step-like features in T(E). To 
achieve high performance, these strategies should be combined with methods for reducing 
inhomogeneous broadening and minimising the phonon thermal conductance.

A comparison between DFT-GGA and DFT-GAA+U for the metallo-porphyrin nanotube PFe.
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Figure S13. shows the comparison between DFT-GGA and DFT-GAA+U calculations of transmission 
coefficient T(E) versus energy for the metallo-porphyrin nanotube PFe.
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Figure S14. shows the comparison between DFT-GGA and DFT-GAA+U calculations for thermoelectric 

coefficients, where (a) room-temperature electrical conductance, (b) the thermopower S and (c) power factor PF = 

 over a range of Fermi energies for the metallo-porphyrin nanotube PFe.𝜎𝑆2
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Figure S15. shows the corresponding results for electronic contribution to the (a) thermal conductance ke and (b) 

figure of merit ZTe versus Fermi energy.

G/
G 0

0

2

4

6

8

10

T(K)
0 100 200 300 400

PFe
GGA
GGA+U

S 
(μ

V/
K)

−60

−40

−20

0

20

T(K)
100 200 300 400

PFe
GGA
GGA+U

PF
 (W

/m
.K

2 )

0

2·10−4

4·10−4

6·10−4

8·10−4

10−3

T(K)
100 200 300 400

PFe
GGA
GGA+U

ZT
e

0

0.2

0.4

0.6

0.8

1

T(K)
100 200 300 400

PFe
GGA
GGA+U

(a) (b)

(c) (d)

Figure S16. shows the comparison between DFT-GGA and DFT-GAA+U calculations for thermoelectric 

coefficients versus temperature T, where  (a) the electrical conductance, (b) thermopower S, (c) power factor PF = 

σS2 and (d) electronic figure of merit ZTe evaluated at  for the metallo-porphyrin nanotube PFe.𝐸𝐹 ‒ 𝐸𝐷𝐹𝑇
𝐹 = 0 𝑒𝑉
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Figure S17. shows the comparison between DFT-GGA and DFT-GAA+U calculations of transmission coefficient 

T(E) versus energy for the metallo-porphyrin nanotube PFe in presence of a  counter ion.𝐶𝑙 ‒
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Figure S18. shows the comparison between DFT-GGA and DFT-GAA+U calculations for thermoelectric 

coefficients, where (a) room-temperature electrical conductance, (b) the thermopower S and (c) power factor PF = 

 over a range of Fermi energies for the metallo-porphyrin nanotube PFe in presence of a  counter ion.𝜎𝑆2 𝐶𝑙 ‒
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Figure S19. shows the corresponding results for electronic contribution to the (a) thermal conductance ke and (b) 

electronic figure of merit ZTe versus Fermi energy.
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Figure S20. shows the comparison between DFT-GGA and DFT-GAA+U calculations for thermoelectric 

coefficients versus temperature T, where  (a) the electrical conductance, (b) thermopower S, (c) power factor PF = 

σS2 and (d) electronic figure of merit ZTe evaluated at  for the metallo-porphyrin nanotube PFe in 𝐸𝐹 ‒ 𝐸𝐷𝐹𝑇
𝐹 = 0 𝑒𝑉

presence of a  counter ion.𝐶𝑙 ‒
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