Supporting Information for

Ultra-Micropores of Hard Carbons for Ultrafast Na-ion Storage

Hu Zhang,^{ab} Jian Yin,^{b*} Dandan Ouyang,^b Yu Liu,^{bc} Ruiyao Wu,^b Rui Zhang,^b Ruiqiang Huo,^{bc} Gaixiu Yang,^d Yanjun Cai,^{a*} and Jiao Yin^{b*}

^aCollege of Chemistry and Chemical Engineering, Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials Xinjiang Normal University Urumqi, 830054, Xinjiang, P. R. China E-mails: cyjxjsf@yeah.net

^bXinjiang Key Laboratory of Separation Material and Technology Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Urumqi, 830011, China E-mails: yinjian@ms.xjb.ac.cn; yinjiao@ms.xjb.ac.cn

^cCenter of Material Science and Opto-electronic Technology University of Chinese Academy of Sciences Beijing 100049, China

^dCAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou, 510640, China

Supporting Figures

Fig. S1 Macroscopic morphology of CS, NP, and NP5.

Fig. S2 FT-IR of CS, NP, and NP5.

Fig. S3 SEM images of NP1 (a-b), NP3 (c-d) and NP7 (e-f), TEM images of CS, NP and NP5.

Fig. S4 The In-situ TG-IR curves of the two samples (a) CS, (b) NP. The TGA curves of the three samples CS (c). The FTIR curves of the three samples (d).

Fig. S5 Evolution of microstructures examined by the deconvolution of (002) XRD planes: (a) CS, (b) NP, (c) NP5.

Fig. S6 Raman images of NP1, NP3 and NP7 (a). XRD images of NP1, NP3 and NP7 (b). The values of the I_D/I_G and La, Lc (c).

Fig. S7 CO₂ adsorption-desorption isotherms of CS+HAC (a). Pore size distribution of CS+HAC (b). SAXS patterns of CS, NP and NP5 (c). Fitted SAXS patterns of NP (d).

Fig. S8 XPS survey spectra of samples: (a) CS, (b) NP and (c) NP5.

Fig. S9 XPS spectra of CS: (a) C 1s, (b) O 1s and (c) N 1s.

Fig. S10 XPS spectra of NP: (a) C 1s, (b) O 1s, (c) N 1s and (d) P 2p.

Fig. S11 XPS spectra of NP5: a) C 1s, b) O 1s.

Fig. S12 First Charge/discharge curves for NP1, NP3 and NP7 at 0.02 A g^{-1} .

Fig. S13 the CV curves at 0.1 m V s⁻¹ for CS (a) and NP (d), CV curves for CS (b) and NP (e), b-value derived from the currents of anodic and cathodic peaks at various scan rates for CS (c) and NP (f).

Fig. S14 Nyquist plots.

Fig. S15 The capacitive contribution for CS at 0.1-2 mV s⁻¹.

Fig. S16 The capacitive contribution for NP at 0.1-2 mV s⁻¹.

Fig. S17 The capacitive contribution for NP5 at 0.2-2 mV s⁻¹.

Fig. S18 The in-situ Raman spectra.

Supporting Tables

		CS	NP	NP5
Area (%)	Highly disordered	31	36	40
	Pseudo-graphitic	32	39	37
	Graphite-like	37	25	23

Table S1 Physical parameters of different hard carbons from the XRD spectra.

Table S2 Physical	parameters of different	hard carbons.

	La (nm)	Lc (nm)	d002 (nm)	I_D/I_G
CS	4.94	2.42	0.35	0.98
NP	3.39	1.66	0.37	1.03
NP1	3.72	1.82	0.36	1.01
NP3	3.19	1.56	0.37	1.00
NP5	4.04	1.98	0.39	1.00
NP7	2.91	1.42	0.36	0.93

Table S3 Pore structural parameters of CS, NP and NP5.

	Specific Surface	Pore Volume	Specific Surface	Pore Volume
	Area (N ₂)	(N ₂)	Area (CO_2)	(CO ₂)
	(m^{2}/g)	(cm^{3}/g)	(m^{2}/g)	(cm^{3}/g)
CS	12.568	0.012	11.475	0.004
NP	16.289	0.017	76.751	0.028
NP5	423.602	0.187	578.291	0.194

Table S4 CS, NP and NP5 in 0.4-0.8 nm pore volume.

	Pore Volume (N ₂)	Pore Volume (CO ₂)
	(cm^3/g)	(cm^{3}/g)
CS	0	0.002
NP	0	0.017
NP5	0.092	0.136

		CS	NP	NP5
C la	C-C	87.59	62.78	60.44
	C-O (C-N, C-P)	4.15	13.52	14.36
C IS	С=О	3.93	7.73	1.028
	O=C-O	4.31	15.97	14.92
	С=О	23.28	6.98	
	C-O	67.9	81.89	63.02
O 1s	O=C-O	8.82	11.13	14.22
	O-N			3.01
	O-P			19.75
	N-O			8.59
	N-Q			31.63
N 1s	N-P			30.49
	N-5			9.83
	N-6			19.46
	O-P			33.17
P 2p	N-P			33.66
	C-P			33.17

 Table S5 Percentage composition after peak split fitted XPS.

 Table S6 Na-ion storage performance of NP-X hard carbons.

	Capacity	ICE	plateau capacity	slope capacity
CS	181 mAh/g	56%	49 mAh/g	108 mAh/g
NP	222 mAh/g	44%	99 mAh/g	107 mAh/g
NP1	231 mAh/g	69%	81 mAh/g	150 mAh/g
NP3	158 mAh/g	54%	30 mAh/g	128 mAh/g
NP5	386 mAh/g	73%	173 mAh/g	213 mAh/g
NP7	301 mAh/g	72%	96 mAh/g	205 mAh/g

	Capacity	Slope capacity	Plateau capacity	Journals
1	302 mAh g ⁻¹	152 mAh g ⁻¹	101 mAh g ⁻¹	Small ¹
2	346 mAh g ⁻¹	117 mAh g ⁻¹	108 mAh g ⁻¹	Nano Micro Lett. ²
3	323 mAh g ⁻¹	135 mAh g ⁻¹	232 mAh g ⁻¹	Energy Storage Mater ³
4	417 mAh g ⁻¹	100 mAh g ⁻¹	317 mAh g ⁻¹	Energy Storage Mater ⁴
5	279 mAh g ⁻¹	156 mAh g ⁻¹	123 mAh g ⁻¹	Carbon ⁵
6	361 mAh g ⁻¹	129 mAh g ⁻¹	171 mAh g ⁻¹	Chem. Eng. J. ⁶
8	326 mAh g ⁻¹	262 mAh g ⁻¹	64 mAh g ⁻¹	Adv. Mater. ⁷
9	386 mAh g ⁻¹	173 mAh g ⁻¹	213 mAh g ⁻¹	This work

 Table S7 Comparison of the slope capacities and plateau capacities of hard carbons.

Name	SSA	Capacity	Rate Capability	ICE	Cycle Life	Journals				
	(m^{2}/g)	(mAh g ⁻¹)	(mAh g ⁻¹)	(%)						
L 6 1200	2 51	205 @0.10	174 @ 50	85	87.5% retention over 500 cycles, 237	Small				
L0-1300	2.31	505 @0.1C	1/4 @ 50	4 (<i>u</i>) 5C 85	$mAh g^{-1}@1C$	Sman				
	10.4	246 @20 m 1 m	102 @ 1 A ~-1	80	90% retention over 200 cycles, 252	Nana Miara Latt ²				
ACGC900	19.4	540 @30 mA g ·	192 @ 1 A g ¹	80	mAh g^{-1} @50 mA g^{-1}	Nano Micro Lett				
DCDC125	76 10	220 @20 1	192 @ 1 A ~-1	20	96% retention over 300 cycles, 252	Energy Storage				
PCBC125	/0.19	330 @20 mA g ¹	182 (<i>u</i>) 1 A g ¹ 89	mAh g^{-1} @100 mA g^{-1}	Mater ³					
VIIC 1200	227.57	260 @100 1	206 @ 1 A ~-1	70	82% retention over 1000 cycles, 200	Carlton				
VHC-1200	1200 227.57 200 @100 IIIA	200 @100 mA g ¹	206 @ 1 A g ¹ /2	200 w 1 A g	200 w 1 A g	200 @ 1 A g	100 IIIA g ² 200 (<i>w</i> 1 A g ² 72	200 W I A g 72	mAh g^{-1} @500 mA g^{-1}	Carbon
	7	270 @20 m / ~-1	122 @ 1 A ~-1	70	85% retention over 500 cycles, 162	Contrar Enormals				
ппс	/	279 @20 mA g ·	152 @ 1 A g ¹	70	mAh g ⁻¹ @1 A g ⁻¹	Carbon Energy [®]				
	2 2	250 @20 m A and	92 @ 1 A ~-l	97	96% retention over 100 cycles, 270	Ada Matan 9				
HC-DB-0	82	330 @20 mA g ¹	83 @ 1 A g ¹	80	mAh g^{-1} @100 mA g^{-1}	Adv. Mater.				
NID5	579 201	286 @20 m A1	151 @ 1 A ¹	72	85% retention over 2000 cycles, 180	This most				
NP3	378.291	380 @20 mA g ⁻¹	131 (<i>W</i>) 1 A g ⁻¹	/3	$mAh g^{-1}@1 A g^{-1}$	This work				

Table S8 Comparison of the physical properties and Na-ion storage performance of hard carbon anodes.

Samples	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
CS	5.568	178.9
NP	4.317	137.8
NP5	4.204	98.35

Table S9 Electrode parameters and diffusion coefficient for CS, NP and NP5 anode.

 Table S10 Percentage of capacitive contribution at different sweep speeds.

	0.1 mV s ⁻¹	0.2 mV s ⁻¹	0.5 mV s ⁻¹	0.8 mV s ⁻¹	1 mV s ⁻¹	2 mV s ⁻¹
CS	27.08	32.55	44.63	48.46	54.55	80.61
NP	30.32	31.73	40.32	52.84	55.32	81.22
NP5	33.53	41.13	52.40	56.57	62.73	74.24

References

- 1 Z. Tang, D. Jiang, Z. Fu, J. Zhou, R. Liu, R. Zhang, D. Sun, A. S. Dhmees, Y. Tang and H. Wang, *Small Methods*, 2024, 2400509
- J. Yang, X. Wang, W. Dai, X. Lian, X. Cui, W. Zhang, K. Zhang, M. Lin, R. Zou, K. P. Loh, Q. H. Yang and W. Chen, *Nano Micro Lett.*, 2020, 13, 98.
- 3 G. Zhao, T. Xu, Y. Zhao, Z. Yi, L. Xie, F. Su, Z. Yao, X. Zhao, J. Zhang, W. Xie, X. Li, L. Dong and C.-M. Chen, *Energy Storage Mater.*, 2024, **67**, 103282.
- 4 X. Zhao, P. Shi, H. Wang, Q. Meng, X. Qi, G. Ai, F. Xie, X. Rong, Y. Xiong, Y. Lu and Y.-S. Hu, *Energy Storage Mater.*, 2024, **70**, 103543.
- 5 G. Pan, R. Zhao, Z. Huang, C. Cui, F. Wang, Y. Gu, Y. Gao, Z. Sun and T. Zhang, *Carbon*, 2024, **224**, 118955.
- 6 X. Zhang, R. Duan, T. Zheng, P. Chen, X. Yu, Z. Qiao and D. Ruan, *Chem. Eng. J.*, 2024, **498**, 155232.
- 7 J. Xia, D. Yan, L. Guo, X. Dong, W. C. Li and A. H. Lu, Adv. Mater., 2020, **32**, 2000447.
- 8 Y. Qiu, G. Jiang, Y. Su, X. Zhang, Y. Du, X. Xu, Q. Ye, J. Zhang, M. Ban, F. Xu and H. Wang, *Carbon Energy*, 2024, **6**, 479-491.
- 9 Y. Wang, Z. Yi, L. Xie, Y. Mao, W. Ji, Z. Liu, X. Wei, F. Su and C. M. Chen, *Adv. Mater.*, 2024, **36**, 2401249.