Supporting Information for

Enhanced Electrochemical Performance of Aqueous Zn-Ion Batteries Based on $Na_2V_6O_{16}$ ·2H₂O Cathodes: Insights from DFT and Synchrotron X-ray Analysis

Younghee So^{1,‡}, Huncheol Seo^{2,‡}, Seung Hwan Lee^{3,‡}, Eunseo Lee^{1,4}, Jinyoung Lee^{1,4},

Joonhee Kang⁵, Young Yong Kim^{6,*}, Byung-Hyun Kim^{2,7,*}, Sungwook Mhin^{1,4,*}

¹Department of Materials Science and Engineering, Kyonggi University, Suwon 16227, Republic of Korea ²Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan 15588, Republic of Korea

³School of Mechanical Engineering, Hanyang University, 222 Wangsimni-Ro, SeongDong-Gu, Seoul, 04763, Republic of Korea

⁴Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea ⁵Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea ⁶Beamline Division, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea ⁷Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea

*Correspondence and request for materials should be addressed to S. Mhin (<u>swmhin@kgu.ac.kr</u>), Y. Y. Kim (kimyy@postech.ac.kr), and B.-H. Kim (bhkim00@hanyang.ac.kr)

KEYWORDS. Aqueous zinc-ion battery, charge/discharge cycle, cathode material, Na₂V₆O₁₆·2H₂O (NaVO), sonochemical synthesis.

Figure. S1 TGA curve of NaVO

Figure. S2 TEM image and EDX mapping of NaVO

Fig. S3. Raman spectra of (a) $\mathrm{V_2O_5}$ and (b) NaVO

Figure. S4 Characteristics of the V_2O_5 and NaVO from XPS spectra. (a) The wide survey scan of V_2O_5 and NaVO. A narrow scan data and fitted curves of V 2p, O 1s, and Na 1s are shown in (b), (c), and (d), respectively.

Figure. S5 Chage/Difcharge curve of NaVO//Zn at 0.5, 1, 2, 4, 6, 8, 10 and 20 A g⁻¹ respectively.

Figure. S6 The contact angles of electrolyte on (a) V_2O_5 and (b) NaVO cathode.

Figure. S7 Cycling performance of NaVO//Zn and V_2O_5 //Zn at 10A g⁻¹.

Figure. S8 Coulombic efficiency of (a) NaVO and (b) V_2O_5 for 10000 cycles. Coulombic efficiency of (c) NaVO and (d) V_2O_5 for 100 cycles.

Figure. S9 CV curves of V_2O_5 //Zn for 5 cycles at scan rates from 0.1 mV s⁻¹.

Figure. S10 SEM images and EDS mapping of NaVO (a) Initial (b) Discharge at 1.0 V (c) Discharge at 0.2 V (d) Charge at 1.0 V and (e) Charge at 0.2 V.

Figure. S11 Optimized structural configurations of NaVO with Zn intercalation at concentrations of (a) 0, (b) 1, (c) 2, (d) 3, and (e) 4 Zn ions. (Zn: gray, V: blue, Na: violet, O: red, H: white)

Figure. S12 Relative energy for Zn ion migration between equivalent sites in (a) NaVO and (b) V₂O₅ cathodes along the pathway.

Figure. S13 Relative energy plot of initial, transition and final state during Zn migration between equivalent sites in (a), (c) NaVO and (b), (d) V_2O_5 cathodes. (Zn: gray, V: blue, Na: violet, O: red, H: white)

Figure. S14 Comparison of volume expansion ratio in NaVO and V_2O_5 cathodes during Zn intercalation.

Figure. S15 Electronic density of states for (a) NaVO and (b) V_2O_5

Figure. S16 The XRD patterns of Zinc Anode before and after cycling.

V_2O_5	Charge percentage (%)	Volume (Å ³)	Volume expansion (%)
0 Zn	100	183.005	0
1 Zn	75	192.051	4.94
2 Zn	50	209.354	14.40
3 Zn	25	202.005	10.38
4 Zn	0	237.972	30.04

NaVO	Charge percentage (%)	Volume (Å ³)	olume (Å ³) Volume expansion (%	
0 Zn	100	331.857	0	
1 Zn	75	360.952	8.77	
2 Zn	50	367.730	10.81	
3 Zn	25	373.357	12.50	
4 Zn	0	388.608	17.10	

Table S1. Comparison of volume expansion ratio in NaVO and V_2O_5 cathodes during Zn intercalation.

Cathode Material	Electrolyte	Synthetic method	Voltage range (V)	Specific Capacity (mAh g ⁻¹)	Cycling performance (cycles)	Reference
$Na_2V_6O_{16}{\cdot}2H_2O$	$Zn(CF_3SO_3)_2$	Sonochemical	0.2-1.8	126.3 at 10 A g ⁻¹	10000	This work
$Na_2V_6O_{16}{\cdot}3H_2O$	Zn(ClO ₄) ₂ /PC	hydrothermal	0.2-1.7	142 at 5 A g ⁻¹	5000	[1]
$Na_2V_6O_{16}$ ·2.14H ₂ O	$ZnSO_4/Na_2SO_4$	hydrothermal	0.2-1.6	116 at 20 A g ⁻¹	2000	[2]
$Na_2V_6O_{16}$ ·1.66H ₂ O	ZnSO ₄ /Na ₂ SO ₄	hydrothermal	0.2-1.6	102 at 5 A g ⁻¹	1800	[3]
$Na_2V_6O_{16}\cdot 3H_2O$	ZnSO ₄	Microwave-Assisted Hydrothermal	0.4-1.4	152 at 15 A g ⁻¹	1000	[4]

Table S2. Comparison of this work with previous studies on Zn-ion battery cathodes[1] Tan, Huiteng, et al., Free-Standing Hydrated Sodium Vanadate Papers for High-StabilityZinc-Ion Batteries. *Batteries & Supercaps* 3.3 (2020): 254-260.

[2] Hu, Fang, et al., Na₂V₆O₁₆·2.14H₂O nanobelts as a stable cathode for aqueous zinc-ion batteries with long-term cycling performance. *Journal of Energy Chemistry* 38 (2019): 185-191.

[3] Qin, Liping, et al., Improved working voltage and high rate performance of sodium vanadate cathode materials for aqueous zinc ion batteries by altering synthetic solution pH guiding the structure change. *Materials Today Communications* 31 (2022): 103460.

[4] Soundharrajan, Vaiyapuri, et al., $Na_2V_6O_{16}\cdot 3H_2O$ barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. *Nano letters* 18.4 (2018): 2402-2410.