
Fluorinated carbon nanodot-tube/MXene/microfiber electronic textile with high water-interference-resistance for stable amphibious human motion monitoring

Yibo Wang^{a,b}, Jiansong Lu^{a,b}, Guangying Zhang^{a,b}, Haoyang Song^{a,b}, Yang Cai^{a,b}, Ximan Wang^{a,b}, Hongjia Zhang^{a,b}, Feng Fang^c, Changsheng Liu^{a,b}, Yongquan Qing^{a,b*} ^aSchool of Materials Science and Engineering, Northeastern University, Shenyang 110819, China ^bKey Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China ^cChina Textile Standard (Zhejiang) Testing Co., Ltd., Shaoxing 312000, China

Corresponding author

*Dr. Y.Q. Qing: E-mail: qingyq@mail.neu.edu.cn

Fig. S1. (a) LSCM topographical images of the MXene-textile for direct anti fouling and **(b)** indirect anti fouling. **(c)** LSCM topographical images of the FCNET for direct anti-fouling and **(d)** indirect anti-fouling.

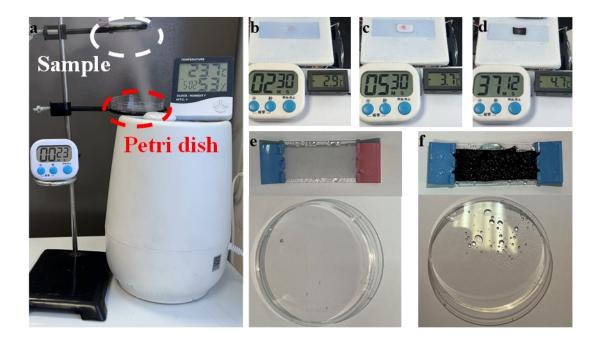


Fig. S2. (a) Schematic diagram of condensing device. Photographs of the freezing time of droplets on the surfaces of (b) glass slide, (c) fabric, and (d) FCNET. Surfaces of (e) fabric and (f) FCNET after condensation test, with the culture dish positioned below.

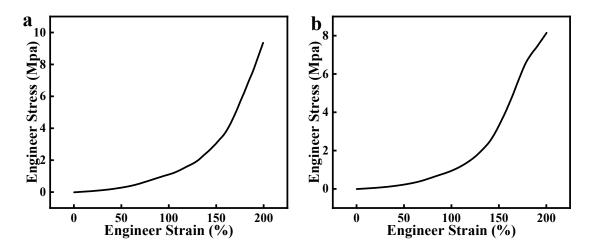


Fig. S3. (a) Stress-strain curve of nylon textile. (b) Stress-strain curve of FCNET.

Response	Corrosion resistance	Wear resistance	Underwater	Reference
time				
200 ms	0.01 M acid contact	1000-grit sandpaper	\checkmark	[19]
		with a 100 g weight for		
		20m		
150 ms	0.01 M acid soak for 2 h	1000-grit sandpaper	\checkmark	[20]
		with a 20 g weight for		
		16m		
none	none	1500-grit sandpaper	\checkmark	[31]
		with a 50 g weight for		
		1m		
151 ms	0.001 M acid soak for 6	800-grit sandpaper with	×	[38]
	h	a 10 g weight for 0.8 m		
200 ms	0.01 M acid contact	none	×	[39]
125 ms	0.1 M acid soak for 2 h	1000-grit sandpaper	\checkmark	Our work
		with a 50 g weight for		
		10m		

Table S1 Performance comparison of superhydrophobic flexible sensors.

Supplementary Videos

Movie S1: Demonstration of various pH values and different types of liquids rolling off the surface.

Movie S2: Acidic, alkaline, and saline solutions effectively carry away dust from the sensor surface.