Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Improving Cycling Stability and Rate Performance of Aqueous Sodium-Ion Supercapattery via Mitigating Metal Dissolution and Boosting Conductivity by Anchoring FePBA on rGO

Sheetal Gupta^a, Mayank K. Singh^a, Sarathkumar Krishnan^a, Suporna Bhowmik^a, Khushwant Singh^a, and Dhirendra K. Rai^a*

^aSustainable Energy & Environmental Materials (SEEM) Lab, Department of Metallurgical Engineering and Materials Science (MEMS), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.

*Corresponding author: Tel: +91 731 660 3278

E-mail: dkrai@iiti.ac.in (D K Rai)

List of Content

S1. Synthesis of GO and rGO.

Table S1. Rietveld refined parameters for Na_{2-x}FeFe (CN)₆ sample.

Fig. S1. TGA profile of FPBA, rGO, and FPBA/rGO composite.

Table S2. Comparison of FPBA, rGO, and FPBA/rGO composite weight loss percentage.

Fig. S2. N₂ adsorption-desorption isotherm of (a) FPBA (b) rGO and, (c) FPBA/rGO composite.

Fig. S3. FTIR spectra of FPBA, rGO, and FPBA/rGO composite.

Fig. S4. EDX spectra and mapping of Na, Fe, C, N, and O elements in FPBA and FPBA/rGO composite.

Fig. S5. (a-d) CV and GCD profiles of FPBA/rGO composites with different ratios of FPBA and rGO at varying scan rates and current densities.

Fig. S6. CV profile comparison of bare Ni-form, rGO, FPBA, and FPBA/rGO composite at 100 mV.s⁻¹ scan rate.

Fig. S7. Charge storage kinetics log (highest current, A) vs. log (scan rate, mV.s⁻¹) graph plots of (a) rGO, (b) FPBA, and (c) FPBA/rGO composite.

Fig. S8. Electrochemical kinetics analysis: Peak current (highest current, A) vs. square root of scan rate $(mV.s^{-1})1/2$ graph plots of (a) FPBA, and (b) FPBA/rGO composite at different scan rate between 10 to 100 mV.s⁻¹. It is observed that the peak currents for both electrodes exhibit a linear relationship with the square root of the scan rate.

Fig. S9. GCD profile comparison of (a) FPBA and (b) rGO at various current densities ranging from 1-50 A g⁻¹.

Fig. S10. (a-b) Nyquist plot and equivalent Randles circuit, Bode phase angle plots of rGO.

Table S3. Calculated resistance and diffusion coefficient from EIS spectra of FPBA and FPBA/rGO composite.

Fig. S11. Bode phase angle plots for rGO, FPBA, and FPBA/rGO composite.

Fig. S12. Cyclic stability of FPBA and FPBA/rGO composite at 10 A g⁻¹ for 10000 cycles.

Fig. S13. PXRD data of FPBA/rGO fresh and after 1000 cycles.

Fig. S14. (a-b) FESEM and EDX spectra of (a) FPBA electrode fresh and (b) FPBA electrode after 1000 cycles, (c) Iron atomic ratio % comparison between fresh and after 1000 cycles FPBA electrode, (d-e) FESEM and EDX spectra of (a) FPBA/rGO composite electrode fresh and (b) FPBA/rGO composite electrode after 1000 cycles, (f) Iron atomic ratio % comparison between fresh and after 1000 cycles FPBA/rGO composite.

Table S4. The concentration of $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_6]^{3-}$ before and after 1000 cycles was calculated according to the UV-Vis spectra.

Fig. S15. (a) CV profile of the SScD at scan rates from 10 mV s⁻¹ to 100 mV s⁻¹; (b) GCD profiles of the SScD at current densities from 1 A g⁻¹ to 10 A g⁻¹ (c) Specific capacity of SScD Vs. current densities (1-10 A g⁻¹) plot for FPBA SScD.

Fig. S16. Kinetics calculation based on the frequency ($\omega^{-1/2}$) and Z' values of fresh and after 10000 cycles of the FPBA/rGO composite SScD.

Table S5. Calculated resistance and diffusion coefficient from EIS spectra of fresh and after 10000cycles of the FPBA/rGO composite SScD.

Table S6. Comparison table of FPBA/rGO composite SScD.

S1. Synthesis of GO and rGO

To synthesize graphene oxide (GO), 4 gm of graphite flakes and 2 g of NaNO₃ were added to 140 mL of H_2SO_4 in a 500 mL flask while stirring in an ice bath. Afterward, 12 g of KMnO₄ was gradually added, keeping the temperature at 20°C. Subsequently, the ice bath was removed, and the reaction mixture was heated to 50°C and stirred for 18 h. Then it was cooled to room temperature, and 220 mL of deionized water and 10 mL of H_2O_2 were added and further stirred for 4 h. Finally, the reaction mixture was filtered, and the product was washed with 10% HCl, DI water, and ethanol, and then dried in a vacuum oven to obtain GO. To obtain rGO, 500 mg of GO was dispersed in 80 mL of water through sonication and then stirred for 1 h. Afterward, 7 mL of hydrazine hydrate was added at 20°C, and then the reaction mixture was heated to 100°C for 25 h. Finally, the reaction mixture was washed with DI water and ethanol and dried in a vacuum oven to get the dry powder of rGO.

Cubic (Fm-3m); $a=b=c=10.33(\text{Å})$; $\alpha=\beta=\gamma=90^{\circ}$; V=1102.30 Å ³ ; R _{wp} =3.99%, Chi ² =3.2							
Atoms	Wyckoff	Х	У	Z	Occupancy		
Na	8c	0.25000	0.25000	0.25000	0.750		
Fe1	4a	0.00000	0.00000	0.00000	1.000		
Fe2	4b	0.50000	0.50000	0.50000	1.000		
С	24e	0.25000	0.00000	0.00000	1.000		
Ν	24e	0.50000	0.00000	0.00000	1.000		

Table S1. Rietveld refined parameters for Na_{2-x}FeFe (CN)₆ sample.

Fig. S1. TGA profile of (a) FPBA, (b) rGO, and (c) FPBA/rGO composite.

Sample	Weight loss in %					
	1	2	3			
FPBA	16.23 % (30-280°C)	7.62 % (280-480°C)	17.61 % (480-680°C)			
rGO	91.38 % (30-540°C)		-			
FPBA-rGO	14.23 % (30-280°C)	10.57 % (280-480°C)	14.71 % (480-680°C)			

Table S2. Comparison of FPBA, rGO, and FPBA/rGO composite weight loss percentage.

Fig. S2. N₂ adsorption-desorption isotherm of (a) FPBA (b) rGO, and (c) FPBA/rGO composite.

Fig. S3. FTIR spectra of (a) FPBA, (b) rGO, and (c) FPBA/rGO composite.

Fig. S4. EDX spectra and mapping of Na, Fe, C, N, and O elements in FPBA and FPBA/rGO composite.

Fig. S5. (a-d) CV and GCD profiles of FPBA/rGO composites with different ratios of FPBA and rGO at varying scan rates and current densities.

Fig. S6. CV profile comparison of bare Ni-form, rGO, FPBA, and FPBA/rGO composite at 100 mV.s⁻¹ scan rate.

Fig. S7. Charge storage kinetics log (highest current, A) vs. log (scan rate, mV s⁻¹) graph plots of (a) rGO, (b) FPBA, and (c) FPBA/rGO composite.

Fig. S8. Electrochemical kinetics analysis: Peak current (highest current, A) vs. square root of scan rate (mV s⁻¹)^{1/2} graph plots of (a) FPBA, and (b) FPBA/rGO composite at different scan rates between 10 to 100 mV s⁻¹. It is observed that the peak currents for both electrodes exhibit a linear relationship with the square root of the scan rate.

Fig. S9. GCD profile comparison of (a) FPBA and (b) rGO at various current densities ranging from 1-50 A g⁻¹.

Fig. S10. (a) Nyquist plot and equivalent Randles circuit, (b) Bode phase angle plots of rGO.

Table S3. Calculated resistance and diffusion coefficient from EIS spectra of FPBA, FPBA/rGO composite and rGO.

	$R_{S}\left(\Omega ight)$	$R_{CT}(\Omega)$	σ (Ω s ^{-1/2})	σ (Ω s ^{-1/2})	D _{Na+}
			(from EIS	(from	(cm ² s ⁻¹)
			Fitting)	Randles	
				circuit)	
FPBA	4.454	3.501	7.602	7.013	3.881 × 10 ⁻¹¹
FPBA/rGO	4.19	2.431	4.180	3.936	1.283 × 10 ⁻¹⁰
rGO	5.033	1.445	39.35	-	-

Fig. S11. Bode phase angle plots of FPBA and FPBA/rGO composite

Fig. S12. Cyclic stability of FPBA and FPBA/rGO composite at 10 A g⁻¹ for 10000 cycles.

Fig. S13. PXRD data of FPBA/rGO fresh and after 1000 cycles.

Fig. S14. (a-b) FESEM and EDX spectra of (a) FPBA electrode fresh and (b) FPBA electrode after 1000 cycles; (c) Iron atomic ratio % comparison between fresh and after 1000 cycles FPBA electrode; (d-e) FESEM and EDX spectra of (d) FPBA/rGO composite electrode fresh and (e)

FPBA/rGO composite electrode after 1000 cycles; (f) Iron atomic ratio % comparison between fresh and after 1000 cycles FPBA/rGO composite.

Table S4. The	concentration	of [Fe(CN) ₆] ⁴⁻	and	$[Fe(CN)_{6}]^{3-}$	after	1000	cycles	was	calculated
according to the	UV-Vis spectr	a.							

Concentration	[Fe(CN) ₆] ⁴⁻	[Fe(CN) ₆] ³⁻	Total	
	(mM)	(mM)	(mM)	
FPBA	0.328	0.208	0.536	-
after 1000				
cycles				
FPBA/rGO	0.15	0.045	0.195	
after 1000				
cycles				

Fig. S15. (a) CV profile of the SScD at scan rates from 10 mV s⁻¹ to 100 mV s⁻¹; (b) GCD profiles of the SScD at current densities from 1 A g⁻¹ to 10 A g⁻¹ (c) Specific capacity of SScD Vs. current densities (1-10 A g⁻¹) plot for FPBA SScD.

Fig. S16. Kinetics calculation based on the frequency ($\omega^{-1/2}$) and Z' values of fresh and after 10000 cycles of the FPBA/rGO composite SScD.

Table S5. Calculated resistance and diffusion coefficient from EIS spectra of fresh and after 10000cycles of the FPBA/rGO composite SScD.

() 01	() 0 ((cm^2)	s ⁻¹)
5.90	1 2.86	2.74	□ 10 ⁻¹⁰
41 52.6	1 17.6	97 7.16	□ 10 ⁻¹²
	34 5.90 41 52.6	34 5.901 2.86 41 52.61 17.6	(cm² 34 5.901 2.861 2.74 41 52.61 17.697 7.16

Electrode material	Operating potential window (V)	Specific capacity (C g ⁻¹)	Energy density (Wh Kg ⁻¹)	Power density (W Kg ⁻¹)	Cyclic retention	Ref.
Graphene@ prussian blue//AC	1.8	44.61 Fg ⁻¹ (80.29 C g ⁻¹) at 0.5 A g ⁻¹	20.1	450	87.5% retention at 5 A g ⁻¹ over 5000 cycles	1
Cobalt hexacyanoferra te//AC	1.4	65.5 Fg ⁻¹ (91.7 C g ⁻¹) at 0.5 A g ⁻¹	17.4	1196	91 retentions at 1 A g ⁻¹ over 6000 cycles	2
Co-Co@Ni-Fe PBA-PPy//AC	1.6	64 Fg ⁻¹ (102.4 C g ⁻¹) at 1 A g ⁻¹	20	808.9	79% retention at 10 A g ⁻¹ over 2000 cycles	3
CoHCF/rGO	2.0	65 Fg ⁻¹ (130 C g ⁻¹) at 1 A g ⁻¹	39.6	1000	91% retention at 5 A g ⁻¹ Over 1000 cycles	4
Ni2CoHCF/NF //AC/NF	1.5	96.9 Fg ⁻¹ (145.4 C g ⁻¹) at 0.5 A g ⁻¹	30.59	378.7	94.32 retention at 2 A g ⁻¹ over 2000 cycles	5
CoHCF//AC	2	78 Fg ⁻¹ (156 C g ⁻¹) at 1 A g ⁻¹	42.5	990	89% retention at 5 A g ⁻¹ over 5000 cycles	6
NiFePBA/rGO/ CC-0.5	2	92 Fg ⁻¹ (184 C g ⁻¹) at 0.5 A g ⁻¹	51.11	540	74.38% retention at 5 A g ⁻¹ over 10000 cycles	7

 Table S6. Comparison table of FPBA/rGO composite SScD.

FPBA/rGO	1.8	138.5 Fg ⁻¹ (249.3 C g ⁻¹) at 1 A g ⁻¹	62.32	900	90.5% retention at 10 A g^{-1} over 10000	This work
					cycles	

References:

- 1 S.-C. Wang, M. Gu, L. Pan, J. Xu, L. Han and F.-Y. Yi, Dalton Trans., 2018, 47, 13126–13134.
- 2 Z. Song, W. Liu, Q. Yuan, Q. Zhou, G. Liu and Z. Zhao, J. Mater. Sci. Mater. Electron., 2018, 29, 14897–14905.
- 3 P. Mukherjee, V. R. S, A. Borenstein and T. Zidki, Mater. Chem. Front., 2023, 7, 1110-1119.
- 4 J.-G. Wang, Z. Zhang, X. Liu and B. Wei, *Electrochimica Acta*, 2017, 235, 114–121.
- 5 X. Zhu, H. Tao and M. Li, Int. J. Hydrog. Energy, 2020, 45, 14452-14460.
- 6 J.-G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang and B. Wei, *Nano Energy*, 2017, 39, 647–653.
- 7 T. Miao, J. Zhang, Y. Wang, K. Fang, Z. Wang, K. Zhan and B. Zhao, *J. Colloid Interface Sci.*, 2023, **648**, 768–777.