Supplementary Information for

Optimizing electrochemical alcohols oxidation reactions via defect-rich CoFe-layered double hydroxide

Xingjian Sun, Ruikang Zhang,* Han Lu, Qichao Yan, Sicong Sun, Yuanzhe Gao*

Hebei Technology Innovation Center for Energy Conversion Materials and Devices,

College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang,

Hebei 050024, China

E-mail: <u>zhangruikang@hebtu.edu.cn</u> (R. Zhang)

E-mail: yzgao2003@126.com (Y. Gao)

Experimental Details

All potentials in this work were adjusted to the reversible hydrogen electrode (RHE), according to the equation: $E_{RHE} = E_{applied} + E_{Hg/HgO} + 0.0592$ pH. The Tafel slope was calculated from the Tafel equation as follows: $\eta = b \log i$, where η is the overpotential and b is the Tafel slope.

CoFe-LDH and CoFe-LDH-Don the nickel foam were sonicated to collect the powder. Then, the powder was acidified with 0.1 M HCl and finally the metal ion concentration was tested by inductively coupled plasma atomic emission spectrometer (ICP-AES). The liquid product is detected by taking 1 ml of electrolyte and performing a nuclear magnetic test with dimethyl sulfoxide (DMSO, 99.9%) as a solvent.

The Faradaic efficiency (FE) of acetate was calculated as: $FE=(n \times c \times V \times F/Q)$

*100%, where n is the number of transferred electrons, for acetate, n = 4, F is the Faraday constant, c is the concentration of acetate in the electrolyte as determined by ion chromatography, V is the volume of the electrolyte used for ethanol oxidationelectrolyte, and Q is the quantity of applied electric charges during the chronoamperometric measurements of EOR. (In this experiment, we took 1 ml electrolyte and then diluted 50 times for ion chromatography to detect acetate concentration; Q is given by the automatic integration given by the electrochemical work station.)

The coverage (τ^*) was calculated as:Ip = (n²F²/4RT)vA τ^* . In this formula, Ip represents the Co redox peak current density, n is the number of electrons involved in the transfer (Co³⁺/Co⁴⁺, n= 1), F is the Faraday constant (96845 C mol⁻¹), R is the ideal gas constant (8.314 J⁻¹ mol⁻¹), T is the temperature maintained at 298.15 K, v is the scanning rate of the cyclic voltammetric curve, A refers to the geometric surface area of the glassy carbon electrode which is 0.196 cm², and τ^* indicates the surface coverage of the redox-active species.

Computational Details:

CoFe-LDH and CoFe-LDH-D models: The models were built on the basis of XRD and ICP-AAS results. The space group is p3m1, with lattice parameter $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$. The (003) and (110) facet of NiFe-LDH were located at $2\theta = 11.41^{\circ}$ and 59.94°, respectively. the lattice parameters deduced to be a = b = 3.08 Å, and c = 7.17 Å. The supercell of CoFe-LDH is set to be $5 \times 3 \times 1$ in the a-, b-, and c-direction. CoFe-LDH model. Chloride anions are placed into the interlayer gallery of LDHs to

keep the charge neutral. The atomic numbers of Co-Fe-O-H-Cl were 11-4-30-30-4 in the CoFe-LDH. One Fe atom were removed from CoFe-LDH model to built CoFe-LDH-D model.

Computational Methods: All the calculations are performed using the Forcite code in the Materials Studio, version 6.1 software package. The geometry optimizations are based on the following points: (1) Forcefield is Universal; (2) the electrostatic is Ewald; (3) the quality is Ultra-fine. The adsorption models is created by installing the LDH slab on the (001) surface, and the vacuum distance here is set to be 30 Å to eliminate the interactions between the replicas of the slab model. Adsorption Locator tools are used to investigate the minimum adsorption energies of the intermediate species.

A	Atomic n Element	s Element r A	tomic concentr	Weight concentr		Atomic n Element	Element	Atomic concentr	Weight concent
-	8 O	Oxygen	0.686846	0.378378	-1k	8 O	Oxygen	0.621064	0.328328
_	13 Al	Aluminun	0.00754579	0.00700701	IK	13 Al	Aluminu	0.0561657	0.0500501
	26 Fe	Iron	0.0615347	0.10990991		26 Fe	Iron	0.0672637	0.124124
	27 Co	Cobalt	0.244073	0.415516	-	27 Co	Cobalt	0.255507	0.497497
		0000) @			

Fig. S1 The EDS of (a) CoFe-LDH-D and (b) CoFeAl-LDH.

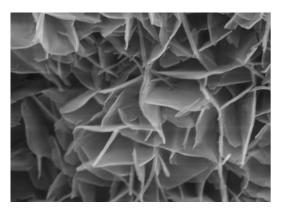


Fig. S2 SEM images of CoFe-LDH.

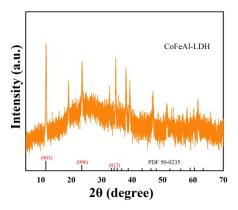


Fig. S3 XRD patterns of CoFeAl-LDH.

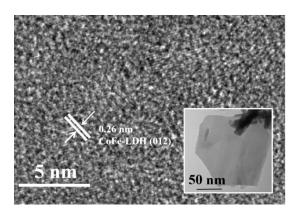


Fig. S4 The TEM imagine of CoFe-LDH.

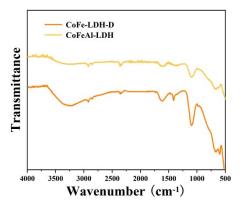
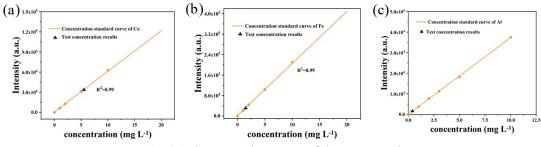
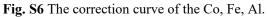




Fig. S5 The FT-IR spectroscopy of CoFe-LDH-D and CoFeAl-LDH.

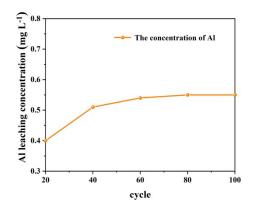


Fig. S7 The concentration of Al in the electrolyte during electrochemical base activation.

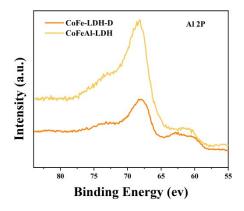


Fig. S8 Al 2P XPS of CoFeAl-LDH and CoFe-LDH-D.

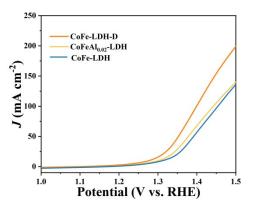
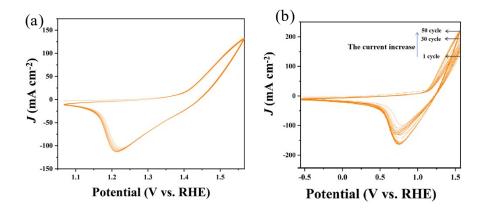



Fig. S9 The LSV of CoFe-LDH-D, CoFeAl-LDH and CoFe-LDH.

Fig. S10 The CV cycling curves of CoFeAl-LDH in the voltage range of 1.07 to 1.57 V *vs.* RHE and -0.57 to 1.57 V *vs.* RHE.

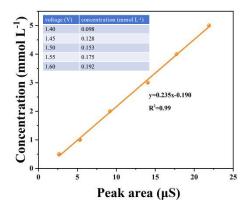


Fig. S11 The correction curve of the CH₃COO⁻.

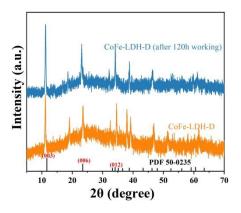


Fig. S12 XRD patterns of CoFe-LDH-D after working 120 h.

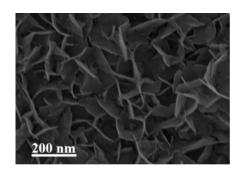


Fig. S13 SEM imagine of CoFe-LDH-D after working 120 h.

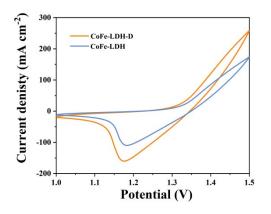
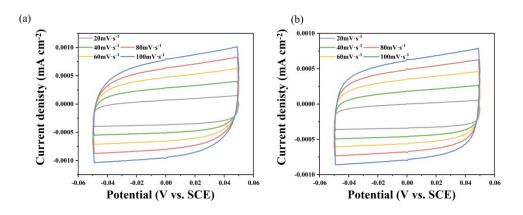



Fig. S14 The cyclic voltammetry (CV) curves of CoFe-LDH-D and CoFe-LDH in KOH-ethanol electrolyte.

Fig. S15 The CV in the non Faradaic region of -0.05 to 0.05 V of (a) CoFe-LDH-D and (b) CoFe-LDH.

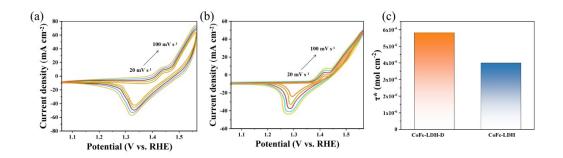


Fig. S16 CV curves of (a) CoFe-LDH-D and (b) CoFe-LDH in 1.0 M KOH in the potential range 1.07-1.57 V vs. RHE and at a scan rate of 20-100 mV s⁻¹.

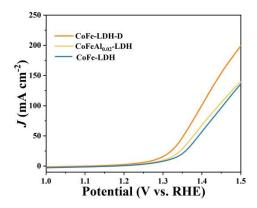


Fig. S17 LSV curves of CoFe-LDH-D, CoFeAl0.02-LDH and CoFe-LDH.

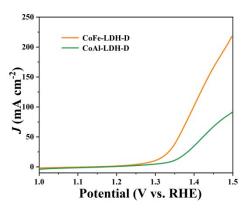
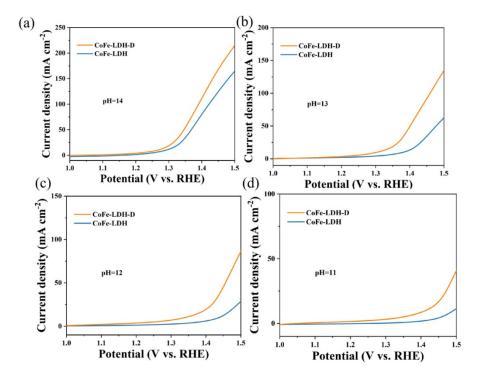



Fig. S18 LSV curves of CoFe-LDH-D and CoAl-LDH-D.

Fig. S19 The structure of CoFe-LDH and CoFe-LDH-D during the EOR process.

Fig. S20 The LSV of CoFe-LDH-D and CoFe-LDH at (a) pH=14, (b) pH=13, (c) pH=12, and (d) pH=11.