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Experimental Details

All potentials in this work were adjusted to the reversible hydrogen electrode 

(RHE), according to the equation: ERHE = Eapplied + EHg/HgO + 0.0592pH. The Tafel 

slope was calculated from the Tafel equation as follows: η = b logi, where η is the 

overpotential and b is the Tafel slope.

CoFe-LDH and CoFe-LDH-Don the nickel foam were sonicated to collect the 

powder. Then, the powder was acidified with 0.1 M HCl and finally the metal ion 

concentration was tested by inductively coupled plasma atomic emission spectrometer 

(ICP-AES). The liquid product is detected by taking 1 ml of electrolyte and 

performing a nuclear magnetic test with dimethyl sulfoxide (DMSO, 99.9%) as a 

solvent.

The Faradaic efficiency (FE) of acetate was calculated as: FE= (n × c × V × F/Q) 
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*100%, where n is the number of transferred electrons, for acetate, n = 4, F is the 

Faraday constant, c is the concentration of acetate in the electrolyte as determined by 

ion chromatography, V is the volume of the electrolyte used for ethanol 

oxidationelectrolyte, and Q is the quantity of applied electric charges during the 

chronoamperometric measurements of EOR. (In this experiment, we took 1 ml 

electrolyte and then diluted 50 times for ion chromatography to detect acetate 

concentration; Q is given by the automatic integration given by the electrochemical 

work station. )

The coverage (τ*) was calculated as:Ip = (n2F2/4RT)νAτ*. In this formula, Ip 

represents the Co redox peak current density, n is the number of electrons involved 

in the transfer (Co3+/Co4+, n= 1), F is the Faraday constant (96845 C mol⁻1), R is 

the ideal gas constant (8.314 J⁻1 mol⁻1), T is the temperature maintained at 298.15 

K, ν is the scanning rate of the cyclic voltammetric curve, A refers to the geometric 

surface area of the glassy carbon electrode which is 0.196 cm2, and τ* indicates the 

surface coverage of the redox-active species.

Computational Details:

CoFe-LDH and CoFe-LDH-D models: The models were built on the basis of 

XRD and ICP-AAS results. The space group is p3m1, with lattice parameter α = β = 

90°, γ = 120°. The (003) and (110) facet of NiFe-LDH were located at 2θ= 11.41° and 

59.94°, respectively. the lattice parameters deduced to be a = b = 3.08 Å, and c = 7.17 

Å. The supercell of CoFe-LDH is set to be 5 × 3 × 1 in the a-, b-, and c-direction. 

CoFe-LDH model. Chloride anions are placed into the interlayer gallery of LDHs to 



keep the charge neutral. The atomic numbers of Co-Fe-O-H-Cl were 11-4-30-30-4 in 

the CoFe-LDH. One Fe atom were removed from CoFe-LDH model to built CoFe-

LDH-D model.

Computational Methods: All the calculations are performed using the Forcite 

code in the Materials Studio, version 6.1 software package. The geometry 

optimizations are based on the following points: (1) Forcefield is Universal; (2) the 

electrostatic is Ewald; (3) the quality is Ultra-fine. The adsorption models is created 

by installing the LDH slab on the (001) surface, and the vacuum distance here is set to 

be 30 Å to eliminate the interactions between the replicas of the slab model. 

Adsorption Locator tools are used to investigate the minimum adsorption energies of 

the intermediate species.
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Fig. S1 The EDS of (a) CoFe-LDH-D and (b) CoFeAl-LDH.

Fig. S2 SEM images of CoFe-LDH.

Fig. S3 XRD patterns of CoFeAl-LDH.



Fig. S4 The TEM imagine of CoFe-LDH.

Fig. S5 The FT-IR spectroscopy of CoFe-LDH-D and CoFeAl-LDH.
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Fig. S6 The correction curve of the Co, Fe, Al.



Fig. S7 The concentration of Al in the electrolyte during electrochemical base activation.

Fig. S8 Al 2P XPS of CoFeAl-LDH and CoFe-LDH-D.

Fig. S9 The LSV of CoFe-LDH-D, CoFeAl-LDH and CoFe-LDH.
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Fig. S10 The CV cycling curves of CoFeAl-LDH in the voltage range of 1.07 to 1.57 V vs. RHE 
and -0.57 to 1.57 V vs. RHE.

voltage (V) concentration (mmol L-1)

1.40 0.098
1.45 0.128
1.50 0.153
1.55 0.175
1.60 0.192

Fig. S11 The correction curve of the CH3COO-.

Fig. S12 XRD patterns of CoFe-LDH-D after working 120 h.



Fig. S13 SEM imagine of CoFe-LDH-D after working 120 h.

Fig. S14 The cyclic voltammetry (CV) curves of CoFe-LDH-D and CoFe-LDH in KOH-ethanol 
electrolyte.

Fig. S15 The CV in the non Faradaic region of -0.05 to 0.05 V of (a) CoFe-LDH-D and (b) CoFe-
LDH.



Fig. S16 CV curves of (a) CoFe-LDH-D and (b) CoFe-LDH in 1.0 M KOH in the potential range 
1.07-1.57 V vs. RHE and at a scan rate of 20-100 mV s⁻1. 

Fig. S17 LSV curves of CoFe-LDH-D, CoFeAl0.02-LDH and CoFe-LDH.

Fig. S18 LSV curves of CoFe-LDH-D and CoAl-LDH-D.



Fig. S19 The structure of CoFe-LDH and CoFe-LDH-D during the EOR process.

Fig. S20 The LSV of CoFe-LDH-D and CoFe-LDH at (a) pH=14, (b) pH=13, (c) pH=12, and 
(d) pH=11.


