High efficiency organic-silicon heterojunction solar cells with

high work function PEDOT:F-based hole-selective contacts

Xinliang Lou, Qunyu Bi, Yifan Diao, Zhao Wu, Kun Gao, Xinyu Wang, Dacheng Xu, Jing Wang, Hong Lin, Junjie Xie, Kun Li, Wenhao Li, Shibo Wang, Wei Shi, Fengxian Cao, Chunfang Xing, Wenhao Li, Xiaofeng Wu, Tengyue Hu, Ruxin Guo, Weiyu Shen, Niuwa Yang, Hao Tian, Chuanxiao Xiao, Guifang Xu, Xiaohong Zhang, Xinbo Yang

Support Information

Table S1 The J-V parameters of selected high efficiency organic/c-Si heterojunction solar

cells					
Contact Types	V _{oc} /mV	J _{sc} /mA⋅cm ⁻²	FF/%	PCE/%	
b-PEI ¹	720	37.0	72.9	19.4	
III-PEI ²	641	37.6	80.7	19.5	
PCBM ³	706	40.67	77.1	20.0	
PTAA ⁴	634	39.1	80.6	20.2	
PEDTOT:PSS⁵	657	38.9	80.6	20.6	
2PACZ ⁶	725	39.3	79.2	21.4	
PEDOT:F	654.8	39.7	83.0	21.6	

 Table S2 The thickness of spin-coated PEDOT:F films as a function of the concentration

 (PEDOT:F/ethanol ratio).

PEDOT:F concentration	0.1	0.2	0.3	0.4	0.5
Thickness (nm)	4.2	18.4	21.7	33.3	42.3

Parameters	Value		
Cell thickness	160 μm		
Front sheet resistance	100 Ω/ □		
Unit cell dimension	700*700 μm		
Junction depth	0.5 μm		
Collection efficiency (emitter & rear)	1		
J_{0e} -passivated	10 fA/cm ²		
J _{oe} -contacted	500 fA/cm ²		
Front contact resistivity	1×10 ⁻⁴ Ω·cm ²		
Front contact shape/half width	line /12.5 μm		
p ⁺ emitter half width	700 µm		
<i>p</i> -Si bulk resistivity	3.0 Ω·cm		
Bulk lifetime	3000 μs		
Rear contact shape	full area		
Rear contact J_0 sweep range	1×10 ⁻¹⁵ to 1×10 ⁻¹¹ A/cm ²		
Rear contact ρ_c sweep range	1×10 ⁻³ to 10 Ω·cm ²		
Generation type	uniform		
Generation current	44 mA/cm ²		
Illumination side	Front		
Shading width	25 μm		

Table S3 The main parameters used in the Quokka simulations

Figure S1. The PCE evolution of organic/c-Si heterojunction solar cells

Figure S2. Dark *I-V* curves of *p*-Si/PEDOT:F/Ag heterocontact measured under different spacings, and the extracted ρ_c is shown together.

Figure S3. Dark *I-V* curves of *p*-Si/Ag direct contact measured under different spacings, and the extracted ρ_c is shown together.

Figure S4. The contact resistivity of p-Si/Al₂O₃/PEDOT:F/Ag heterocontact with different thickness of Al₂O₃.

Figure S5. Injection level-dependent minority carrier lifetime of bare *p*-Si.

Figure S6. Efficiency distribution of p-Si solar cells with different rear contacts

Figure S7. Dependence of normalized series resistance (R_s) of *p*-Si solar cells with PEDOT:F and Al₂O₃/PEDOT:F rear contacts on the storing times.

Figure S8. (a) Injection level-dependent minority carrier lifetime and (b) $(\tau_{eff}^{-1} - \tau_{Auger}^{-1})$ of *p*-Si passivated by a-Si:H and a-Si:H/PEDOT:F stack. The τ_{eff} , iV_{oc} and J_0 are extracted and shown together.

Figure S9. Dark *I-V* curves of *p*-Si/a-Si:H/PEDOT:F/Ag heterocontact measured under different spacings, and the ρ_c is extracted and shown together.

Figure S10. Dependence of the PCE of *p*-Si solar cells on J_0 and ρ_c of the a-Si/PEDOT:F rear contact calculated using Quokka 2. The potential PCE of device is marked with a star.

References

- W. Ji, T. Allen, X. Yang, G. Zeng, S. De Wolf, A. Javey, ACS Energy Lett., 2020, 5, 897-902.
- X. Yang, Z. Ying, Z. Yang, J. Xu, W. Wang, J. Wang, Z. Wang, L. Yao, B. Yan, J. Ye, Adv. Science., 2021, 8, 2003245.
- Z. Sun, M. Liu, Y. Zhou, Q. Wang, Y. Yang, Y. Zhou, F. Liu, Sol. Energy Mater. Sol. Cells., 2022, 235, 111453.
- X. Lou, X. Wang, D. Xu, K. Gao, S. Wang, C. Xing, K. Li, W. Li, D. Li, G. Xu, X. Yang, Sol. RRL., 2023, 7, 2300796-2300802.
- D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, J. Schmidt, Energy Procedia., 2015, 77, 331-339.
- A. Prasetio, R. R. Pradhan, P. Dally, M. Ghadiyali, R. Azmi, U. Schwingenschlögl, T. G. Allen, S. De Wolf, Adv. Energy Mater., 2023, 14, 2303705.