Supplementary Information (SI) for

Structural response of metal-organic frameworks to non-thermal plasma treatment and its effect on CO₂ adsorption and conversion performance

Yue Liu, ^a Linghe Song, ^a Juntai Tian, ^a Shanshan Shang, ^a Peirong Chen, ^{abc} Junliang Wu, ^{abc} Daiqi Ye * ^{abc}

- ^a School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
- ^b National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China
- ^c Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, China

* Corresponding Author

E-mail: cedqye@scut.edu.cn

1. Experimental section

1.1. Chemicals

The primarily used chemicals and reagents including zirconium tetrachloride (ZrCl₄), copper nitrate hydrate (Cu(NO₃)₂·3H₂O), zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), 1,4-dicarboxybenzene (H₂BDC), 4,4'-biphenyldicarboxylic acid (H₂BPDC), 1,3,5-benzenetricarboxylic acid (H₃BTC), 2-methylimidazole (2-MeIM), *N*,*N*-dimethylformamide (DMF), acetic acid, methanol and anhydrous ethanol were obtained from Aladdin Co., Ltd., without further purification before used.

1.2. Synthesis of Cu-BTC

For Cu-BTC,¹ the 0.42 g of H₃BTC (2 mmol) was dissolved in a 24 mL mixture of ethanol and deionized water (v/v=1/1), and then the 0.875 g of Cu(NO₃)₂·3H₂O (3.62 mmol) was added to the mixture. After a thorough stir, the clear blue solution was transferred to a teflon-lined autoclave, and heated at 120 °C for 12 h. The formed blue crystalline powder was filtered and washed with a 50 mL mixture of ethanol and deionized water (v/v=1/1) for three times.

1.3. Synthesis of Zr-BDC and Zr-BPDC

For Zr-BDC,² the 1.456 g of ZrCl₄ (6.27 mmol), the 1.038 g of H₂BDC (6.27 mmol), acetic acid (11.25 mL) and deionized water (675 μ L) were dissolved in 50 mL DMF and then transferred to a 100 mL teflon-lined autoclave, heated at 120 °C for 24 h. The centrifugally collected sediment was suspended in DMF for 2 hours (2 times), and washed three times with anhydrous ethanol over 24 h period. Finally, all synthesized MOFs were activated under a dynamic vacuum overnight at 80 °C. The

synthesis method of Zr-BPDC was consistent with Zr-BDC, except that the organic ligand was replaced with H₂BPDC.

1.4. Synthesis of Zn-MeIM

For preparation of Zn-MeIM,³ 2-MeIM methanol solution (0.82 g, 25 mL) and $Zn(NO_3)_2$ ·6H₂O methanol solution (0.75 g, 25 mL) were rapidly mixed and stirred at room temperature. After stewing for 3 h, the white deposition was collected by centrifugation (8000 rpm, 3 min), and washed with methanol for three times, and the white products were obtained.

2. Additional experimental results

MOFs	Wavenumber (cm ⁻¹)	Peak assignment	Literature value (cm ⁻¹)		
Cu-BTC	1625, 1563	ν _{as} (COO-)	1550-16454		
	1445, 1368	ν _s (COO-)	13684, 14454		
Zr-BDC	1658	v (C=O)	1657 ⁵		
	1579	ν _{as} (COO-)	15796		
	1402	ν _s (COO-)	14026		
	1509	C=C	15096		
	665	О-Н	665 ⁵		
Zn-MeIM	1579	ν (C=N)	1578.77		
	1145, 994	v (C-N)	1145 ⁴ , 994 ⁷		

Table S1 The major peaks found in the infrared band of the MOFs and the structure's

composition.

MOFs	NTP treatments	BET surface area (m ² g ⁻¹)		Pore volume (cm ³ g ⁻¹)			Average pore	
		Total	Mesopore	Micropore	Total	Mesopore	Micropore	(nm)
Cu-BTC	None	1487	183	1304	0.61	0.11	0.50	1.63
Cu-BTC	9 W	1141	132	1009	0.48	0.09	0.39	1.69
Cu-BTC	18 W	565	59.3	506	0.28	0.08	0.19	1.96
Cu-BTC	25 W	595	66.0	529	0.29	0.09	0.20	1.94
Zr-BDC	None	1139	113	1025	0.45	0.07	0.38	1.58
Zr-BDC	9 W	1131	114	1018	0.45	0.07	0.37	1.59
Zr-BDC	18 W	999	101	897	0.40	0.07	0.33	1.60
Zr-BDC	25 W	1022	106	916	0.41	0.08	0.34	1.61

Table S2 The BET parameters of Zr-BDC and Cu-BTC before and after NTP-

assisting CO₂ conversion.

Fig. S1. SEM images of Zr-BPDC and Zn-MeIM before and after the Ar plasma treatment (at 12 W for 2 h).

Fig. S2. XRD patterns of Zr-BPDC and Zn-MeIM before and after the Ar plasma treatment (at 12 W for 2 h).

Fig. S3. FT-IR spectra of Zr-BPDC (a) and Zn-MeIM (b) after the Ar plasma treatment (at 12 W for 2 h).

Fig. S4. TG/DTG of the synthetic (a) Cu-BTC and (b) Zr-BDC. Thermal gravimetric analysis (TGA) was fulfilled by a TGA 8000 thermogravimetric analyzer under a N_2 flow and a temperature increment of 10°/min from 30 °C to 700 °C.

Fig. S5. N_2 adsorption-desorption isotherms at 77 K of Zr-BPDC (a) and Zn-MeIM (b) after the Ar plasma treatment (at 12 W for 2 h).

Fig. S6. Pore-size distribution of (a) Zr-BPDC and (b) Zn-MeIM after the Ar plasma treatment with different input power and time.

Fig. S7. XRD patterns of Zr-BDC after 2 h plasma treatment under various gases at the input power of 12 W.

Fig. S8. FT-IR spectra of Zr-BDC after 2 h plasma treatment under various gases at the input power of 12 W.

Fig. S9. N_2 adsorption-desorption isotherms at 77 K (a), and Pore-size distribution (b) of Zr-BDC after 2 h plasma treatment under various gases at the input power of 12 W.

Fig. S10. XRD patterns of the (a) Cu-BTC and (b) Zr-BDC after the plasma-assisted CO_2 hydrogenation

Fig. S11. FT-IR spectra of the (a) Cu-BTC and (b) Zr-BDC after the plasma-assisted CO_2 hydrogenation.

Fig. S12. N_2 adsorption-desorption isotherms (a) and Pore size distribution (b) of Cu-BTC after the plasma-assisted CO₂ hydrogenation.

Fig. S13. N_2 adsorption-desorption isotherms (a) and Pore size distribution (b) of Zr-BDC after the plasma-assisted CO₂ hydrogenation.

References:

- N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein and X. Fan, *Chem. Eng. J.*, 2015, 281, 669-677.
- 2. S. Zhuang, R. Cheng and J. Wang, Chem. Eng. J., 2019, 359, 354-362.
- Y. Liu, Y. Huo, X. Wang, S. Yu, Y. Ai, Z. Chen, P. Zhang, L. Chen, G. Song, N. S. Alharbi, S. O. Rabah and X. Wang, *J. Clean. Prod.*, 2021, 278, 123216.
- S. Shang, Z. Tao, C. Yang, A. Hanif, L. Li, D. C.W. Tsang, Q. Gu and J. Shang, Chem. Eng. J., 2020, 393, 124666.
- L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K.
 P. Lillerud and C. Lamberti, *Chem. Mater.*, 2011, 23, 1700-1718.
- X. Min, X. Wu, P. Shao, Z. Ren, L. Ding and X. Luo, *Chem. Eng. J.*, 2019, 358, 321-330.
- N. Li, L. Zhou, X. Jin, G. Owens and Z. Chen, J. Hazard. Mater., 2019, 366, 563-572.