Supporting Information

MXene and cellulose nanocrystal co-stabilized Pickering emulsions and their applications as templates to fabricate photothermal phase change material microcapsules

Zhen Zhang^{1,2,3*}, Xiong Fang¹, Zhenghao Wang¹, Wang Sun¹, Yunting Zhang^{1,3*}, Guofu Zhou¹

- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
- College of Teacher Education, South China Normal University, Guangzhou 510006, China

*Corresponding authors: Zhen Zhang, Email: zhangzhen@m.scnu.edu.cn; Yunting Zhang, Email: zhangyunting@scnu.edu.cn

Figure S1. The comparison of the zeta potential of CNC, MXene, CNC/MXene, and

CNC/MXene/NaCl

Figure S2. The size distribution of MC co-stabilized cyclohexane PE with NaCl concentration of 5 mg/mL, MXene concentration of 1 mg/mL, water-to-oil volume ratio of 4: 1 and varied CNC concentrations (0, 0.25, 0.5, 1.0, 3.0, 5.0 mg/mL)

Figure S3. Photographs of MC co-stabilized Pickering emulsion with varied CNC concentrations (0, 0.25, 0.5, 1.0, 3.0, 50.0, and 10.0 mg/mL) at different standing still time

Figure S4. The size distribution of MC co-stabilized cyclohexane PE with NaCl concentration of 5 mg/mL, CNC concentration of 1 mg/mL, water-to-oil volume ratio of 4:1, and varied MXene concentration (0, 0.25, 0.5, 1.0, 3.0, 5.0 mg/mL)

Figure S5. Photographs of MC co-stabilized Pickering with varied MXene concentration (0, 0.25, 0.5, 1.0, 3.0, 5.0 mg/mL) and different standing still time

Figure S6. The size distribution of MC co-stabilized MC co-stabilized PE with (a) hexane, (b) dichloromethane, and (c) toluene as oil phases (at water-to-oil volume ratio of 3: 1, [CNC] of 3 mg/mL, [MXene] of 3 mg/mL, [NaCl] of 5 mg/mL), respectively

Figure S7. TGA of bulk C22 and C22 microcapsules

Table S1.	Summaries	of weight	t ratio of	MXene to	C22 and	C22 microca	apsules.
		0					

Samples	Weight ratio of	E _c	Weight ratio of MXene to C22	Temperature of C22 microcapsules after	
	MXene to C22 (%)		microcapsules (%)	irradiation 20 mins (°C)	
C22@MC/MF0	0	85.5	0	41	
C22@MC/MF1	0.23	85.4	0.19	54	
C22@MC/MF3	0.70	85.0	0.57	56	
C22@MC/MF5	1.17	85.3	1.01	59	
C22@MC/MF8	1.87	85.0	1.62	61	

temperature of C22 microcapsules after irradiation 20 mins