Supporting Information:

Optimizing Discharge Product Morphology with Hetero-Nanostructured NiCoP/NiCo₂O₄ for Enhanced Sustainability in Li-O₂ Battery Performance

Shadeepa Karunarathne^a+, Gabriel E. Pérez^b, W.P.S.L. Wijesinghe^c, François Orange^d, Yasun Y. Kannangara^c, Chirag R. Ratwani^a, Chanaka Sandaruwan^c, Alice Mija^e, Ali Reza Kamai^{f,g+,} Amr M. Abdelkader^a+

^a Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK

^b ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom

° Sri Lanka Institute of Nanotechnology, Technology Park, Pitipana, Homagama 10800, Sri Lanka

^d Université Côte d'Azur, Centre Commun de Microscopie Appliquée, (CCMA), Nice, France

^fUniversité Côte d'Azur, Institut de Chimie de Nice, UMR CNRS 7272, 28 Avenue Valrose, 06108 Nice, Cedex 2, France

^g Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang, 110819, China

Figure S1: SEM image of the hydrothermal product

Figure S2: SEM image of the NiCo₂O₄ precursor

Figure S3: Survey Scan for NiCo₂O₄ (NCO), NiCoP (NCP), and NiCo₂O₄ and NiCoP (NCP@NCO) hybrid structure

Figure S4: SEM images of NiCoP grafted on Ni foam (a-c)

Figure S5: BET analysis for NCO and NCP@NCO

Figure S6: HRTEM images of (a) NCO and, (b) NCP@NCO

Figure S7: Rate Performance- Galvanostatic Discharge/Charge curves for (a) NCP@NCO/Ni, (b) NCP/Ni, and (c) NCO/Ni

Figure S8: Selected individual discharge/charge curves of a) NCP/Ni and b) NCO/Ni at 800 mAg^{-1} with 500 mAh g^{-1} limited capacity.

Figure S9: Cycle Performances of NCP@NCO/Ni and NCP/Ni cathode-based LOB at 800 mAg⁻¹ under limited capacity of 1000 mAhg⁻¹.

Figure S10: (a) SEM, and (b) TEM images of discharged cathode of NCP@NCO/Ni

Figure S11: Suggested growth mechanism of sheet-like Li₂O₂

(b) Discharged Heterogeneous catalytic cathodes with Sheet-like Li_2O_2

Figure S12: Suggested equivalence circuit model to demonstrate the effect of film-like and the sheet-like Li₂O₂ growth

Figure S13: Hollow core on the broken sphere

Figure S14: Unsuccessful core-shell spherical structure model fitting for SAXS results due to particle size incompatibility