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Calculation Method：

First-principles calculations are performed by vienna ab initio simulation package 

(VASP).1, 2 The generalized gradient approximation (GGA) of Perdew-Burke-

Ernzerhof (PBE) is used to describe the exchange-correlation functional.3 To accurately 

describe the dispersion interactions in our simulations, the DFT-D3 method was 

employed.4

Li@BaTiO3: The cut-off energy for the plane wave basis is set to 500 eV and a 4×4×1 

Monkhorst-pack mesh is employed. All atoms were fully relaxed (atomic position) up 

to 10- 4eV/Å force minimization and max force of 0.05 eV/ Å. The DFT+U method was 

used to calculate the electronic properties.5 

Li@LLTO:The cut-off energy for the plane wave basis is set to 500 eV and a 3×2×1 

Monkhorst-pack mesh is employed. All atoms were fully relaxed (atomic position) up 

to 10- 4 eV/Å force minimization and max force of 0.05 eV/ Å. The DFT+U method 

was used to calculate the electronic properties.5

Experimental Section

Preparation of LLTO@BTO nanowires: 

Firstly, we prepared electrospinning precursor solutions of LLTO and BTO:

(1) LLTO precursor solution: Lithium nitrate (LiNO3, Aladdin, 99.9%), Lanthanum 

nitrate hexahydrate (La(NO3)3·6H2O, Aladdin, 99.99%) and Polyvinylpyrrolidone 
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(PVP, Aladdin, MW=1300000) were dissolved in N, N-Dimethylformamide (DMF, 

Hushi, AR) and Acetic acid (AC, Macklin, ≥99.9%) solvent at a certain mass ratio and 

stirred for 12 hours. Then Titanium butoxide (C16H36O4Ti, Aladdin, 98%) was added 

and stirred well to obtain a uniformly mixed solution.

(2) BaTiO3 precursor solution: Barium acetate ((CH₃COO)₂Ba, Hushi, AR) and PVP 

were dissolved in Acetic acid, Absolute ethanol (AE, Hushi, AR) and deionized water 

solvent at a certain mass ratio, stirred for 12 hours, then Titanium butoxide was added 

and stirred for 1 hour to obtain a uniformly mixed solution. 

Secondly, We prepare LLTO@BTO and LLTO nanowires by electrospinning:

The above two precursor solutions were coaxial electrospinning. By using a coaxial 

electrospinning needle, the fiber film was spun at a voltage of 15 kV, a propulsion rate 

of 10 ul min-1, a receiving distance of 10 cm, and a drum speed of 200 r min-1 were used 

to obtain a fiber film and dry. The obtained fiber membrane was sintered at 900 °C for 

1 hour, the heating rate was 3 °C min-1, and coaxial BTO@LLTO nanowires were 

obtained. In addition, a single needle was used for the preparation of LLTO nanowires, 

and other conditions were consistent.

Preparation of Composite Solid Electrolytes:

BTO@LLTO coaxial nanofibers and LLTO nanofibers are ground into staple fibers as 

inorganic fillers. BTO@LLTO or LLTO (5%, 10%, 15%, 20% by mass), Polyethylene 

oxide (PEO, Macklin, MW=1000000) and Lithium bis-trifluoromethane sulfonamide 

(LiTFSI, Aladdin, 99.99 %) were dissolved in Acetonitrile solvent, stirred well, and 

then coated on a PTFE plate to dry to form an electrolyte film. They were called PEO-

LLTO@BTO and PEO-LLTO, separately.

Preparation of cathode:

LiFePO4(LFP), Super-P, PVDF and SCN were mixed in a weight ratio of 7:1:1:1 to 

prepare the cathode. First of all, we needed to grind LiFePO4 and Super-P evenly, add 

PVDF solution and SCN solution, and stir to obtain a uniform cathode slurry. 

Subsequently, the uniform slurry was coated on the foil and dried in a vacuum oven at 

60 ℃. Finally, the dried pole piece was stored for subsequent battery installation.

Characterization of the electrolytes:



The crystal structures of LLTO@BTO and LLTO were observed by X-ray diffraction 

(XRD, Bruker D2 Phaser). The morphology, structure, and element mapping of the 

materials were characterized by field-emission scanning electron microscopy (FE - 

SU8100, Hitachi, Japan), and the diameter distributions before and after calcination 

were statistically analyzed.

The structures of LLTO and LLTO@BTO were observed by transmission electron 

microscopy (TEM, JEM - 2100F, JEOL). Differential scanning calorimetry (DSC, SDT 

- 650, TA Instruments, Milford, USA) and thermogravimetry (TG) were used to study 

the melting temperatures and thermal stabilities of pure PEO, PEO - LLTO and PEO - 

LLTO@BTO.

X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, USA) analysis 

confirmed the states of elements.

Electrochemical Testing:

We used the Electrochemical workstation (CHI760E) and Neware batteries tester 

(Neware company, China) to test the Electrochemical performance. The different 

batteries were assembled in an Ar-filled glove box（the water content < 0.1 ppm, the 

oxygen content < 0.1 ppm）. Assemble stainless steel gasket symmetric cells to 

perform AC impedance measurement under the conditions of 30-60 °C, 100 kHz-1 Hz, 

and an amplitude of 10 mV. Calculate their ionic conductivities at different 

temperatures by the formula  (where  is the ionic conductivity, L is the 
𝜎=

𝐿
𝑅𝑆 𝜎

thickness of the solid-state electrolyte membrane, R is the resistance, and S is the 

contact area), and calculate the activation energy by the Arrhenius formula. Assemble 

gasket|SPE|Li cells. Each cell was subjected to an electrochemical stability test of the 

solid-state electrolyte membrane by linear sweep voltammetry (LSV) at a scan rate of 

0.1 mV s⁻¹ in the range of 0-6 V. Through the polarization test of Li-symmetric cells at 

different current densities, the dynamic interface stability between SPEs and Li metal 

at the working temperature was studied. Use the above-obtained cathode sheets to 

assemble LFP/Li cells and pouch cells and then test them to evaluate their cycling 

performance and practical applications. The redox stability of different composite solid 



electrolytes and the reversibility of LFP/Li cells were determined by cyclic 

voltammetry (CV) at a scanning rate of 0.1 mV s-1 in the voltage range of 3 V-4 V. 

Figure S1 Diameter distribution of LLTO nanofibers before (a) and after calcination (b); 

Diameter distribution of LLTO@BTO nanofibers before (c) and after calcination (d).

Figure S2 (a) XRD profile of LLTO. (b)XRD spectra of different BTO: LLTO (puta-to-core ratio) 
ratios.

The LLTO is encapsulated by BTO and the LLTO@BTO only exhibits the the 

crystal peaks of pure BTO with a BTO: LLTO ratio of 1:1. The crystal peaks of LLTO 

of LLTO: BTO gradually appear with decreasing the BTO: LLTO ratio from 1:1 to 

0.4:1.



Figure S3 EDS element content of LLTO and LLTO@BTO.

Figure S4 Digital images of different solid-state electrolytes: (a) (d) is PEO solid-state electrolyte, 

(b) (e) is PEO-LLTO solid-state electrolyte, and (c) (f) is PEO-LLTO@BTO solid-state electrolyte.

Figure S5 Impedance plot of PEO-LLTO and PEO-LLTO@BTO as a function of temperature.



Figure S6 Polarization curves and initial and steady-state impedance plots (insets) for 

(a) PEO, (b) PEO-LLTO, and (c) PEO-LLTO@BTO. Calculation of the number of 

lithium transfers in a PEO-based electrolyte(d).

Figure S7 Kelvin probe force microscopy interface potential images of PEO-LLTO (a) and PEO-

LLTO@BTO (b) electrolytes.



Figure S8 TG curves of PEO, PEO-LLTO, and PEO-LLTO@BTO 

Figure S9 Cycling time with recently reported articles.6-17

Figure S10 Enlarged picture of the cycling performance of a Li symmetrical cell of PEO-
LLTO@BTO at 0.2 mA cm-2 and 60 °C.



Figure S11 The Li affinity comparison of (a) PEO molecules、(b) BaTiO3 and (c) 

LLTO toward Li atom. 

Figure S12 The CV curves of cells with PEO-LLTO.



Table S1. Recently studied the ionic conductivity and electrochemical stability window 

performance of some solid-state electrolytes.

Polymer Fillers δ (S cm−1) EW(V) Reference

PVDF Y-LZNO 2.34 x 10-4 (RT) 4.82 18

PVDF LTO 2.87 x 10-4 (35 ℃) 5.0 19

PVDF-HFP LLTO 1.21 x 10-4 (25 ℃) 4.7 20

PEO+PEG LATP 1.31 x 10-4 (30 ℃) 5.5 21

PEO SiO2-Aerogel 0.6 x 10-3 (30 ℃) 4.4 22

PEO LLZTO@PDA 1.15 x 10-4 (30 ℃） 4.8 23

PEO SN 3.0 x 10-5 (20 ℃) 4.0 24

PEO SN-LLZTO 6.74 x 10-4 (RT) 4.7 25

PPO LLZO 4.59 x 10-4 (RT) 5.3 26

PPO LAGP 3.46 x 10-4 (RT) 4.78 27

PEGDA LLZTO+SN 3.1 x 10-4 (RT) 4.7 28

PEO LLTO@BTO 1.44 x 10-3 (30 ℃) 5.0 This work
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