Supporting Information

Localized surface plasmon resonance effect boosts photocatalytic

hydrogen evolution of ZnIn₂S₄/amorphous MoO_{3-x} nanodot Z-scheme

heterojunctions

Rui Liu^{a,1}, Yunpei Cui^{a,1}, Teng Wang^a, Jiayou Liu^b, Bo Liu^a, Shuangshuang Zuo^a,

Hesheng Yu^{a*}

a. Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education,

School of Chemical Engineering and Technology, China University of Mining and

Technology, Xuzhou, Jiangsu 221116, China

b. Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo,
 Zhejiang 315200, China

1. These authors contribute equally.

* Corresponding Author:

Dr. H. Yu, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China. E-mail: heshengyu@cumt.edu.cn.

Apparent quantum efficiency (AQE)

The experimental conditions were kept constant. The apparent quantum efficiencies (AQE) of ZIS and ZM10 composite photocatalyst were measured using different singlewavelength filters (350, 380, and 420 nm).¹ The value of AQE at a specific wavelength was calculated using the following equation.

$$AQE(\%) = \frac{N_e}{N_p} \times 100\% = \frac{2 \times nH_2 \times N_A \times h \times c}{I \times S \times t \times \lambda} \times 100\%$$
(1)

where N_e is the number of reacting electrons, N_p is the number of incident photons, nH_2 is the amount of hydrogen evolution in 1 h in the units of mol, N_A is the Avogadro constant (6.023×10²³ mol⁻¹), h is the Planck constant (6.626×10⁻³⁴ J·s), c is the speed of light (3 × 10⁸ m/s), I is the intensity of irradiation light (W/cm²), S is the corresponding light irradiation area (41.83 cm²), t is the photoreaction time (3600 s), and λ is the wavelength of incident light (nm).

Fig. S1 Schematic of the preparation of ZnIn₂S₄/MoO_{3-x} composite catalysts

Fig. S2 Photocatalytic system for hydrogen evolution.

Fig. S4 XPS full-survey spectra of MoO_{3-x} nanodots, ZIS, and ZM10.

Fig. S5 EPR spectra of the MoO₃ and MoO_{3-x} nanodots.

Fig. S6 EDS analysis of ZM10.

Fig. S7 N₂ adsorption-desorption isotherms for ZIS and ZM10; the inset is the corresponding BJH pore-size distribution curves.

Fig. S8 The band gap of MoO_{3-x} nanodots.

Fig. S9 Hydrogen evolution performance of ZM10 and ZIS when irradiated using monochromatic lights at (a) 420 nm, (b) 500 nm, (c) 550 nm.

Fig. S10 The wavelength-dependent AQEs of ZIS and ZM10.

Fig. S11 XPS spectra of ZM10 before and after reaction. (a) Full-survey XPS spectra, (b) Zn 2p spectrum, (c) In 3d spectrum, (d) S 2s spectrum, (e) Mo 3d spectrum, (f) O 1s spectrum.

Quality of	Content of Zn	Content of Mo	Moles of Zn	Moles of Mo	Molar				
ZM10 (g)	(%)	(%)	(mol)	(mol)	ratio				
0.0437	13.82	1.06	9.26×10^{-5}	4.83×10^{-6}	19:1				

Table. S1. ICP test calculation results.

 Table. S2. Comparison of hydrogen production efficiency of ZIS or MoO_{3-x} based photocatalysts.

	Mass	Light	Sacrificial	Hydrogen evolution	
Photocatalyst	(mg)	Source reagent		rate (mmol·g ⁻¹ ·h ⁻¹)	Ref
MoO ₃ @Mo- ZnIn ₂ S ₄	10	300W Xe lamp	TEOA	5.5	2
Mo-doped ZnIn ₂ S ₄	20	300W Xe lamp	TEOA	4.6	3
H _x MoO ₃ @ ZnIn ₂ S ₄	20	300W Xe lamp	TEOA	5.9	4
MoS ₂ /ZnIn ₂ S ₄	80	300W Xe lamp	Na ₂ S and Na ₂ SO ₃	3.9	5
MoO ₂ /ZnIn ₂ S ₄	10	300W Xe lamp	Na ₂ S and Na ₂ SO ₃	3.7	6
CdS/MoO _{3-x}	25	350W Xe lamp	Lactic acid	7.44	7
BP-MoO _{3-x}	10	300W Xe lamp	/	0.4	8
α -MoO _{3-x} /g-C ₃ N ₄	50	300W Xe lamp	TEOA	6.4	9
MoO3- x/Mn0.3Cd0.7S	50	300W Xe lamp	Lactic acid	2.3	10
ZnIn ₂ S ₄ /MoO _{3-x}	30	300W Xe lamp	TEOA	11.08	This
					work

References

- 1 Z. Yu, X. Luan, H. Xiao, Y. Yang, D. Luo, J. Zi and Z. Lian, *Appl. Catal.*, *B*., 2024, **347**, 123702.
- 2 H. Su, H. Lou, Z. Zhao, L. Zhou, Y. Pang, H. Xie, C. Rao, D. Yang and X. Qiu, *Chem. Eng. J.*, 2022, **430**, 132770.
- 3 F. Xing, Q. Liu and C. Huang, *Solar Rrl*, 2020, 4, 1900483.
- 4 F. Xing, C. Cheng, J. Zhang, Q. Liu, C. Chen and C. Huang, *Appl. Catal.*, B., 2021, 285, 119818.
- 5 Z. Zhang, L. Huang, J. Zhang, F. Wang, Y. Xie, X. Shang, Y. Gu, H. Zhao and X. Wang, *Appl. Catal.*, *B*., 2018, **233**, 112-119.
- 6 C. Ouyang, W. Huang, H. Tang, W. Liu, X. Gu, Z. Hong and M. Zhi, *ACS Appl. Energy Mater.*, 2022, **5**, 12739-12751.
- 7 J. Peng, J. Shen, X. Yu, H. Tang, Zulfiqar and Q. Liu, *Chinese. J. Catal.*, 2021, **42**, 87-96.
- 8 M. Hu, J. Zhu, W. Guo, Q. Xu, Y. Min and J. Fan, *ACS Sustainable Chem. Eng.*, 2022, **10**, 1008-1019.
- 9 Y. Ren, D. Feng, Z. Yan, Z. Sun, Z. Zhang, D. Xu, C. Qiao, Z. Chen, Y. Jia, S. Chan Jun, S. Liu and Y. Yamauchi, *Chem. Eng. J.*, 2023, 453, 139875.
- 10 X. Yao, R. Zhang, M. Zhu, D. Zhang, X. Pu, J. Liu, H. Li and P. Cai, *Appl. Surf. Sci.*, 2024, 645, 158890.