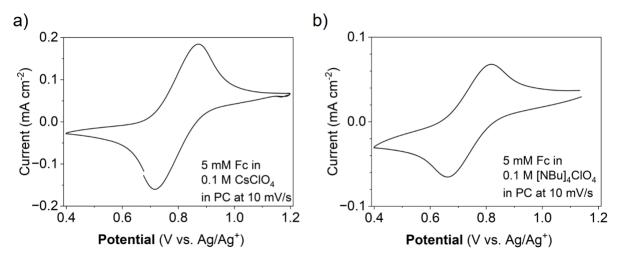
Supplementary Information

## Interlayer pillaring influences the octahedral tilting and electrochemical capacitance of tungsten oxides

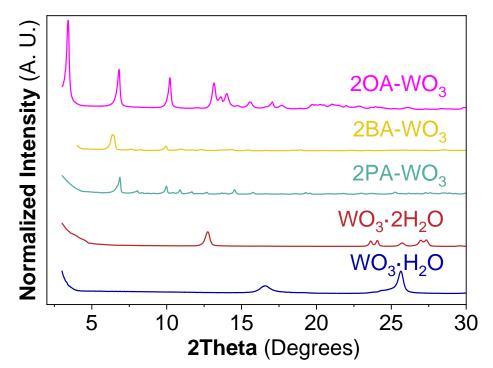
Ran Ding, Michael A. Spencer, Noah P. Holzapfel, Matthew Chagnot, and Veronica Augustyn\*

Department of Materials Science and Engineering

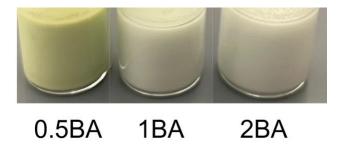
North Carolina State University, Raleigh, NC USA 27695


\* Corresponding author: vaugust@ncsu.edu

## **Table of Contents**


| Table S1. Observed Raman peaks and assignment of WO <sub>3</sub> ·2H <sub>2</sub> O and BA-pillared                                                                                                                                                                                                                                                                                                                        | 52               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| <b>Figure S1.</b> CV of 5 mM ferrocene (Fc) dissolved in (a) 0.1 M CsClO <sub>4</sub> or (b) 0.1 M [NBu] <sub>4</sub> ClO <sub>4</sub> in PC used to calibrate the potential vs. SHE.                                                                                                                                                                                                                                      | n<br>53          |
| Figure S2. XRD of pillared WO $_3$ with different alkyl chain lengths and saturated interlayers S                                                                                                                                                                                                                                                                                                                          | 53               |
| <b>Figure S3.</b> Different colors of BA-WO <sub>3</sub> due to different ratios of butylamine to WO <sub>3</sub> ·2H <sub>2</sub> O durin synthesis.                                                                                                                                                                                                                                                                      | g<br>54          |
| <b>Figure S4.</b> XRD of octylamine pillared WO <sub>3</sub> with various ratios between OA and WO <sub>3</sub>                                                                                                                                                                                                                                                                                                            |                  |
| <b>Figure S6</b> . CVs of WO <sub>3</sub> . <i>n</i> H <sub>2</sub> O and OA-WO <sub>3</sub> with various ratios between OA and WO <sub>3</sub> in the solution of 0.1M LiClO <sub>4</sub> . WE: slurry of tungstates on carbon paper; CE: Pt coil; RE: Li metal; scan rate: 1mV/s.                                                                                                                                        | S5               |
| <b>Figure S7.</b> Raman of fully butylammonium pillared tungsten oxides 2BA-WO <sub>3</sub> in 1 M H <sub>2</sub> SO <sub>4</sub> aft 250 cycles                                                                                                                                                                                                                                                                           | ter<br><b>S6</b> |
| <b>Figure S8.</b> Comparison among CVs of OA-WO <sub>3</sub> with various ratios between OA and WO <sub>3</sub> in the solution of (a) 0.1M LiClO <sub>4</sub> , (b) 0.1M CsClO <sub>4</sub> and (c) 0.1M [NBu] <sub>4</sub> ClO <sub>4</sub> <b>Figure S9.</b> The capacity of WO <sub>3</sub> · $n$ H <sub>2</sub> O and 0.5OA-WO <sub>3</sub> , 1OA-WO <sub>3</sub> and 2OA-WO <sub>3</sub> in difference electrolytes. | <b>57</b><br>ent |
| <b>Figure S10.</b> Ex situ Raman spectroscopy of a 0.5BA-WO <sub>3</sub> electrode before and after electrochemical reduction in 0.1 M LiClO <sub>4</sub> in PC to 2 V vs. Li/Li <sup>+</sup>                                                                                                                                                                                                                              |                  |
| <b>Figure S11.</b> Ex situ XRD of a 0.5BA-WO <sub>3</sub> electrode before and after electrochemical reduction in 0.1 M LiClO <sub>4</sub> in PC to 2 V vs. Li/Li <sup>+</sup>                                                                                                                                                                                                                                             |                  |
| Figure S12. In situ XRD of 0.5BA-WO <sub>3</sub> in 0.1 M LiClO <sub>4</sub> in PC                                                                                                                                                                                                                                                                                                                                         | 59               |

| Frequency (cm <sup>-1</sup> ) | WO <sub>3</sub>      | BA-WO <sub>3</sub>   |
|-------------------------------|----------------------|----------------------|
| 2800-2900                     |                      | <i>v</i> (C-H)       |
| 1470                          |                      | δ(CH <sub>2</sub> )  |
| 950                           | v(W-O <sub>t</sub> ) | v(W-O <sub>t</sub> ) |
| 860, 890                      |                      | v(W-O <sub>t</sub> ) |
| 600-700                       | <i>v</i> (O-W-O)     |                      |
| 330                           | δ(O-W-O)             | δ(Ο-W-Ο)             |
| 210                           | lattice mode         | lattice mode         |


**Table S1.** Observed Raman peaks and assignments for  $WO_3 \cdot 2H_2O$  and BA- $WO_3$ .



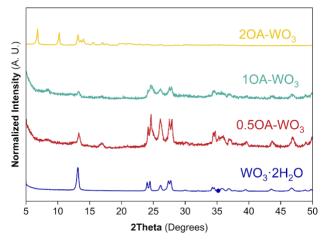
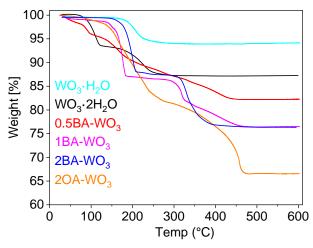
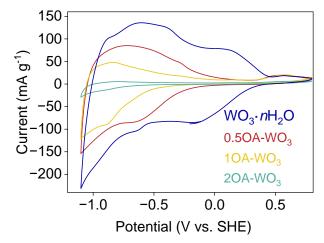
**Figure S1.** CV at 10 mV/s for 5 mM ferrocene (Fc) dissolved in (a) 0.1 M CsClO<sub>4</sub> in PC or (b) 0.1 M [NBu]<sub>4</sub>ClO<sub>4</sub> in PC.

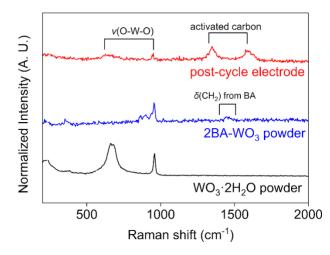


**Figure S2.** XRD of hydrated WO<sub>3</sub> and alkylammonium-cation pillared WO<sub>3</sub> with different alkyl chain lengths.

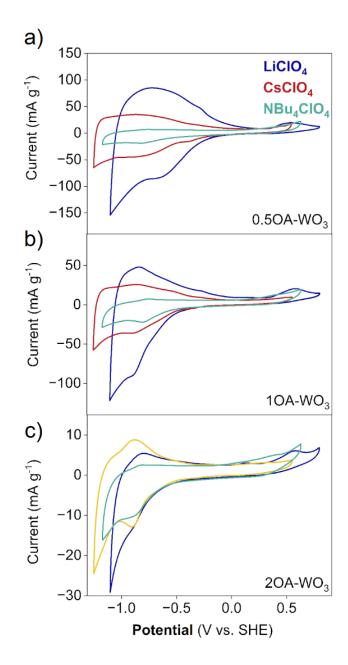


**Figure S3.** Different colors of BA-WO<sub>3</sub> due to different ratios of butylamine to  $WO_3 \cdot 2H_2O$  during synthesis.

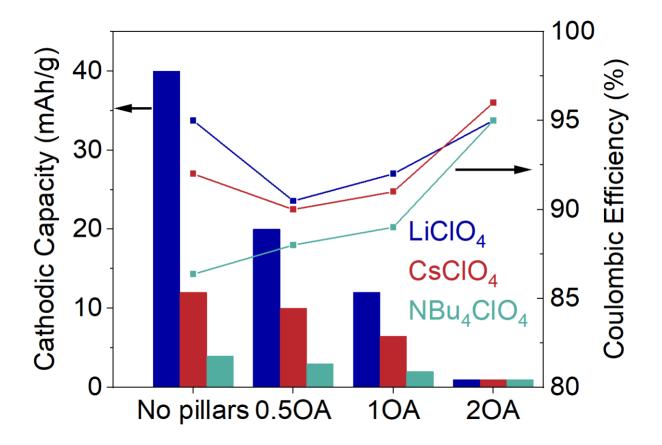






Figure S4. XRD of OA-WO<sub>3</sub> with various ratios between OA and WO<sub>3</sub>.

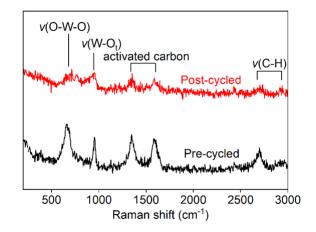



**Figure S5.** TGA curves for tungsten oxides hydrates (WO<sub>3</sub>·H<sub>2</sub>O, WO<sub>3</sub>·2H<sub>2</sub>O), BA pillared tungsten oxides (0.5BA-WO<sub>3</sub>, 1BA-WO<sub>3</sub>, and 2BA-WO<sub>3</sub>), and OA pillared tungsten oxides (2OA-WO<sub>3</sub>). TGA measurements were performed in air with a heating rate of  $2^{\circ}$ C/min.




**Figure S6**. CVs at 1 mV/s of WO<sub>3</sub> $\cdot$ nH<sub>2</sub>O and OA-WO<sub>3</sub> with various ratios between OA and WO<sub>3</sub> in 0.1 M LiClO<sub>4</sub> in PC.




**Figure S7.** Ex situ Raman spectroscopy of an electrode consisting of fully BA-pillared tungsten oxide, 2BA-WO<sub>3</sub>, after 250 cycles at 10 mV/s in 1 M  $H_2SO_4$  and comparison to as-synthesized 2BA-WO<sub>3</sub> and WO<sub>3</sub>·2H<sub>2</sub>O powders.



**Figure S8.** Comparison among CVs of OA-WO<sub>3</sub> with various ratios between OA and WO<sub>3</sub> in the solution of (a) 0.1 M LiClO<sub>4</sub>, (b) 0.1 M CsClO<sub>4</sub> and (c) 0.1 M [NBu]<sub>4</sub>ClO<sub>4</sub> in PC



**Figure S9.** The capacity of  $WO_3 \cdot nH_2O$  and  $0.5OA-WO_3$ ,  $1OA-WO_3$  and  $2OA-WO_3$  in different electrolytes. The bar graph is for cathodic capacity in left *y*-axis and scatter/line graph is for coulombic efficiency in right *y*-axis.



**Figure S10.** Ex situ Raman spectroscopy of a  $0.5BA-WO_3$  electrode before and after electrochemical reduction in 0.1 M LiClO<sub>4</sub> in PC to 2 V vs. Li/Li<sup>+</sup>.

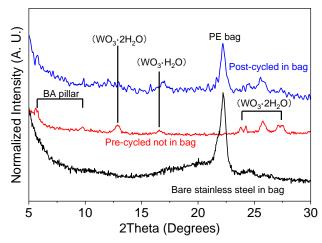
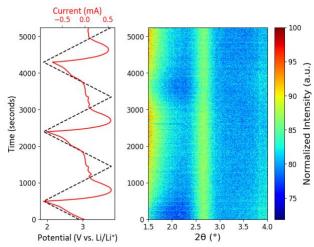




Figure S11. Ex situ XRD of  $0.5BA-WO_3$  before and after electrochemical reduction in 0.1 M LiClO<sub>4</sub> in PC to 2 V vs. Li/Li<sup>+</sup>.



**Figure S12.** In situ electrochemical XRD of  $0.5BA-WO_3$  coated on stainless steel (SS) mesh in 0.1 M LiClO<sub>4</sub> in PC. Cyclic voltammetry was performed between 2 – 3.9 V at a scan rate of 2 mV/s.