Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

1 Supplementary Materials

2 Hierarchical porous Co-rich PtCo thin films for alkaline seawater

- 3 hydrogen evolution with chlorine corrosion resistance
- 4 Meilin Zhang¹, Hanzhong Cui^{2, 3}, Zhou Yang^{2, 3}, Jie Yan^{2, 3}, Jin Zhang^{2, 3}*, Huan
- 5 Ma^{2, 3}, Renguo Guan^{2, 3 **}
- 6¹ School of Materials Science and Engineering, Northeastern University, Shenyang
- 7 110819, China;
- 8 ² Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian
- 9 Jiaotong University, Dalian 116028, China
- 10 ³ Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian
- 11 Jiaotong University, Dalian 116028, China;
- 12 * Correspondence: jinzhang@djtu.edu.cn (J.Z.)
- 13 ** Co-Correspondence: guanrenguo@sina.cn (R.G.)

14 Preparation of Pt/C electrode

15 100 μ L Nafion solution (5 wt.%) was diluted with 3 mL isopropanol. The 9 mg 16 commercial 20 wt.% Pt/C was uniformly dispersed into the diluted Nafion solution by 17 ultrasonic treatment. Subsequently, 15 μ L of the mixed solution was dropped onto the 18 surface of the pre-polished glassy carbon electrode (GCE, diameter: 5 mm). After 19 natural drying at room temperature, it is used as a working electrode for HER test.

20 Tafel slope and HER mechanism

The Tafel slopes of catalysts were calculated from the LSV curves, according to
formula (S1) [S1, S2]:

$$23 \qquad \eta = a + b \lg j \tag{S1}$$

24 where η is overpotential (V vs. RHE), *a* is the y-axis intercept, *b* is Tafel slope 25 (mV sec⁻¹), and *j* is current density (mA cm⁻²).

The HER mechanism can be interrogated from the Tafel slopes. In alkaline environment, the electrolysis of water includes the following cathodic hydrogen evolution reaction and anodic oxygen evolution reaction [S3]:

29 Cathode:
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
 (S2)

30 Anode:
$$4OH^- \rightarrow O_2 + 2H_2O + 4e^-$$
 (S3)

The cathodic hydrogen evolution reaction usually includes two steps. The first step is called the Volmer step (120 mV sec⁻¹), in which electrons on the cathode surface attract H₂O molecules from the electrolyte to produce adsorbed H atoms (H*) as reaction intermediates [S4]:

35 Volmer step:
$$H_2O + e^- + * \rightarrow H^* + OH^-$$
 (S4)

36 The second step involves the formation of H₂ molecules. The coverage of H* on
37 the cathode surface determines two different pathways [S4]:

38 Heyrovsky step:
$$H^* + H_2O + e^- \rightarrow H_2 + OH^- + *$$
 (S5)

39 Tafel step:
$$2H^* \to H_2$$
 (S6)

40 where * refers to an active site. When the coverage of H* on the cathode surface 41 is low, H* is easy to combine with additional electrons and a new H₂O molecule to 42 form H₂ molecules, which is called the Heyrovsky step (40 mV sec⁻¹). On the contrary, 43 the high H* coverage makes the second step occur as a Tafel step (30 mV sec⁻¹), in 44 which two adjacent H* bind to form H₂ molecules. Tafel step is a chemical desorption 45 process.

46 Electrochemical active area (ECSA) and roughness factor (RF)

47 The charging current ΔI (mA) of catalysts at open circuit potential is calculated 48 according to formula (S7) [S5]:

49
$$\Delta I = \left| I_{cathode} - I_{anode} \right|_{ocp}$$
(S7)

50 where $I_{cathode}$ and I_{anode} are cathode current (mA) and anode current (mA) at open 51 circuit potential, respectively.

52 The double-layer capacitance values C_{dl} (mF) are determined based on formula 53 (S8) [S5]:

54
$$C_{dl} = \frac{\Delta I}{2\Delta v} \times 1000$$
(S8)

55 where Δv is the scan rate in the CV test (mV s⁻¹).

56 The ECSA (cm^2) of the catalysts is estimated using formula (S9) [S5]:

57
$$ECSA = \frac{C_{dl}}{C_s}$$
(S9)

58 Where C_s represents the specific capacitance in alkaline media, the value of which 59 is 0.04 mF cm⁻².

60 The RF of the catalysts can be further calculated through formula (S10) [S5]:

$$61 RF = \frac{ECSA}{S} (S10)$$

62 where S is the geometric area of the catalysts with a value of 0.25 cm^{-2} .

64 Fig. S1. CV of the electrolyte on a vitreous carbon electrode under stagnant 65 conditions. Electrolyte contains 2 mM Na₂PtCl₆, 200 mM CoCl₂, 0.1 M NH₄Cl, 0.2 M 66 H_3BO_3 , and 40 g L⁻¹ F127.

67 68

69

Fig. S2. Magnified SEM image of (a) $Pt_{50}Co_{50}$, (b) $Pt_{21}Co_{79}$, and (c) $Pt_{16}Co_{84}$.

Samula	Binding energy (eV)				
Sample -	Pt 4f _{7/2}	Pt 4f _{5/2}	Co 2p _{3/2}	Co 2p _{1/2}	
Pt ₅₀ Co ₅₀	71.58	74.88	780.78	796.68	
Pt ₃₄ Co ₆₆	71.48	74.88	780.38	797.48	
Pt ₂₁ Co ₇₉	71.58	74.88	780.88	796.78	

74.78

780.68

796.38

Table S1. Binding energies for Pt 4f and Co 2p signals of PtCo thin films.

74Fig. S4. High resolution XPS spectra of as-deposited (a, b) $Pt_{50}Co_{50}$, (c, d)75 $Pt_{21}Co_{79}$, and (e, f) $Pt_{16}Co_{84}$ films.

73

Pt₁₆Co₈₄

71.48

Doolea	Binding energy (eV)				
Peaks -	Pt ₅₀ Co ₅₀	Pt ₃₄ Co ₆₆	Pt ₂₁ Co ₇₉	Pt ₁₆ Co ₈₄	
Pt 4f _{7/2}	71.58	71.48	71.58	71.48	
Pt 4f _{5/2}	74.88	74.88	74.88	74.78	
Co (0) 2p _{3/2}	779.18	778.28	779.28	778.78	
Co (0) 2p _{1/2}	794.08	792.98	794.38	793.88	
Co (III) 2p _{3/2}	780.98	779.98	781.18	780.78	
Co (III) 2p _{1/2}	796.68	795.28	796.88	796.38	
Co (II) 2p _{3/2}	783.08	781.18	783.38	782.98	
Co (II) 2p _{1/2}	798.78	797.88	799.18	798.68	
Co (III) 2p _{3/2} Sat.	786.08	786.08	786.08	786.18	
Co (III) 2p _{1/2} Sat.	801.98	801.88	801.98	801.88	
Co (II) 2p _{3/2} Sat.	789.18	789.78	789.18	789.08	
Co (II) 2p _{1/2} Sat.	805.08	805.08	804.78	804.78	

76 Table S2. The separate fitting results of the XPS peaks of as-deposited PtCo films in

Fig. S4, Fig. 8a, and Fig. 8b.

78 79

77

Fig. S5. LSV curves of as-deposited Pt films (the insert is SEM image).

		Overpotential (mV vs. RHE)			Tafel
Electrolytes	Catalysts	@-10	@-50	@-70	slope (mV
		$mA \ cm^{-2}$	mA cm ⁻²	mA cm ⁻²	dec^{-1})
-	Pt ₅₀ Co ₅₀	39	80	95	28
	Pt ₃₄ Co ₆₆	35	63	75	24
	Pt ₂₁ Co ₇₉	48	110	132	37
IM KOH	Pt ₁₆ Co ₈₄	55	124	147	49
	Pt/C	41	123	159	35
	Pt	39	77	92	-
	Pt ₅₀ Co ₅₀	40	73	84	25
1M KOH + 3.5 wt% NaCl	Pt ₃₄ Co ₆₆	33	63	76	22
	Pt ₂₁ Co ₇₉	46	86	99	31
	Pt ₁₆ Co ₈₄	45	111	133	36
	Pt/C	51	184	242	44
	Pt	41	79	94	-
1M KOH + natural seawater	Pt ₅₀ Co ₅₀	35	71	83	39
	Pt ₃₄ Co ₆₆	30	76	93	35
	Pt ₂₁ Co ₇₉	35	79	95	38
	Pt ₁₆ Co ₈₄	38	78	91	41
	Pt/C	50	221	299	88
	Pt	43	97	122	-

80 Table S3. The HER performance of Pt₅₀Co₅₀, Pt₃₄Co₆₆, Pt₂₁Co₇₉, Pt₁₆Co₈₄, commercial
81 Pt/C, and Pt in different electrolytes.

Electrolytes	Catalysts	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$W\left(\Omega ight)$
	Pt ₅₀ Co ₅₀	3.26	0.30	1.71
	Pt ₃₄ Co ₆₆	3.68	0.29	1.52
1M KOH	Pt ₂₁ Co ₇₉	3.35	0.25	2.43
	Pt ₁₆ Co ₈₄	3.03	0.25	3.08
	Pt/C	5.26	0.28	11.50
	Pt ₅₀ Co ₅₀	3.12	0.18	1.38
1M KOH +	Pt ₃₄ Co ₆₆	3.15	0.12	1.47
3.5 wt%	Pt ₂₁ Co ₇₉	3.03	0.16	1.95
NaCl	Pt ₁₆ Co ₈₄	3.05	0.14	1.43
	Pt/C	4.56	0.37	11.85
	Pt ₅₀ Co ₅₀	2.91	0.30	1.91
1M KOH +	Pt ₃₄ Co ₆₆	2.97	0.25	2.15
natural	Pt ₂₁ Co ₇₉	3.10	0.39	2.51
seawater	Pt ₁₆ Co ₈₄	2.88	0.21	2.20
	Pt/C	5.64	0.21	8.09

82 Table S4. EIS spectrum fitting data of Pt₅₀Co₅₀, Pt₃₄Co₆₆, Pt₂₁Co₇₉, Pt₁₆Co₈₄, and 83 commercial Pt/C in different electrolytes.

Table S5. C_{dl} values, ECSA, and RF of $Pt_{50}Co_{50}$, $Pt_{34}Co_{66}$, $Pt_{21}Co_{79}$, $Pt_{16}Co_{84}$, and 84

85

commercial Pt/C obtained in 1 M KOH + 3.5 wt% NaCl.

Catalysts	C_{dl} (mF)	ECSA (cm ²)	RF
Pt ₅₀ Co ₅₀	1.89	47.13	188.50
Pt ₃₄ Co ₆₆	3.48	86.94	347.75
Pt ₂₁ Co ₇₉	2.53	63.19	252.75
Pt ₁₆ Co ₈₄	2.45	61.19	244.75
Pt/C	1.88	46.88	187.50

86 87

Fig. S6. LSV curves normalized by ECSA.

Table S6. The composition of $Pt_{34}Co_{66}$ (the as-prepared state and after the long-term

aging stability test in 1M KOH + natural seawater) and electrolyte (1M KOH +

Samula	Element (at.%)			
Sample	Pt	Co	Mg	Ca
Pt ₃₄ Co ₆₆ at the as-prepared state	33.85	66.15	-	-
Pt ₃₄ Co ₆₆ after long aging test	54.49	32.87	2.88	9.76
electrolyte	0.01	0.01	46.14	53.84

90 natural seawater after the long-term aging stability test) determined by ICP-MS.

91 Chlorine corrosion mechanism of seawater HER

As for the electrocatalytic process taking place in alkaline simulated seawater (1 M KOH + 3.5 wt% NaCl) and alkaline natural seawater (1 M KOH + natural seawater), the aggressive chloride anions can form metal chlorides/hydroxides to corrode catalysts and substrates through the following mechanisms [S6, S7]:

96 Adsorption of Cl⁻ by surface polarization:

97
$$M + Cl^- \rightarrow MCl_{ads} - e^-$$
 (S11)

98 Dissolution by further coordination:

99 $MCl_{ads} + Cl^- \rightarrow MCl_x + e^-$ (S12)

100 Conversion from chloride to hydroxide:

101
$$MCl_x + OH^- \rightarrow M(OH)_x + Cl^-$$
 (S13)

102 103

Fig. S7. High resolution XPS spectra of Pt 4f peaks of Pt deposited.

104 References

105 S1. Y. Chen, J. Zhang, J. Sort, E. Pellicer and R. Guan, International Journal of

- 106 Hydrogen Energy, 2024, 59, 625-634.
- 107 S2. I. H. Cardona, E. Ortega, L. V. Gómez and V. P. Herranz, International Journal of
- 108 Hydrogen Energy, 2012, 37, 2147-2156.
- 109 S3. S. Anwar, F. Khan, Y. Zhang and A. Djire, International Journal of Hydrogen
- 110 Energy, 2021, 46, 32284-32317.
- 111 S4. Z. Zhou, Z. Pei, L. Wei, S. Zhao, X. Jian and Y. Chen, Energy & Environmental
- 112 Science, 2020, 13, 3185-3206.
- 113 S5. E. Cossar, M. S. E. Houache, Z. Zhang and E. A. Baranova, Journal of
- 114 Electroanalytical Chemistry, 2020, 870.
- 115 S6. X. Q. Zhang, Y. X. Xiao, G. Tian, X. Yang, Y. Dong, F. Zhang and X. Y. Yang,
- 116 Chemistry, 2023, 29, e202202811.
- 117 S7. Y. Kuang, M. J. Kenney, Y. T. Meng, W. H. Hung, Y. J. Liu, J. E. Huang, R.
- 118 Prasanna, P. S. Li, Y. P. Li, L. Wang, M. C. Lin, M. D. McGehee, X. M. Sun and H. J.
- 119 Dai, Proceedings of the National Academy of Sciences of the United States of America,
- 120 2019, 116, 6624-6629.