Supporting Information

Symmetric gradient structure enables robust CNF/FeCo/LM composite film with excellent electromagnetic interference shielding and electrical insulation

Song Yang, Maofei Du, Ying Zhang, Yuhan Wang, Ting Gu*, Fei Liu*

Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China

C 1		Absorption	Transition	Reflection	Transition	Absorption
Samp	le	layer	layer	layer	layer	layer
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{7:3}/L_{1:1}-20$	FeCo (g)	0.0126	0.0054		0.0054	0.0126
	LM (g)		0.0126	0.0126	0.0126	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{7:3}/L_{1:2}$ -20	FeCo (g)	0.0126	0.0054		0.0054	0.0126
	LM (g)		0.009	0.018	0.009	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{7:3}/L_{1:3}-20$	FeCo (g)	0.0126	0.0054		0.0054	0.0126
	LM (g)		0.0072	0.0216	0.0072	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{7:3}/L_{1:4}$ -20	FeCo (g)	0.0126	0.0054		0.0054	0.0126
	LM (g)		0.006	0.024	0.006	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{7:3}/L_{1:5}$ -20	FeCo (g)	0.0126	0.0054		0.0054	0.0126
	LM (g)		0.0051	0.0255	0.0051	

Table S1 The formula of the $C/F_{7:3}/L_{m:n}$ -20 composite films with different LM gradient ratio.

Table S? The formula of the C/F	/L 20 composite films	with different mass ratio of FeC	~
Table S2 The formula of the $C/F_{\rm v}$.	$_{\rm v}/L_{1\cdot 3}$ -20 composite mms	s with different mass ratio of FeU	0

Sample		Absorption	Transition	Reflection	Transition	Absorption
		layer	layer	layer	layer	layer
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{5:5}/L_{1:3}$ -20	FeCo (g)	0.009	0.009		0.009	0.009
	LM (g)		0.0072	0.0216	0.0072	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{6:4}/L_{1:3}$ -20	FeCo (g)	0.0108	0.0072		0.0072	0.0108

* Corresponding author:

E-mail: tgu@gzu.edu.cn (T. Gu), ce.feiliu@gzu.edu.cn (F. Liu)

	LM (g)		0.0072	0.0216	0.0072	
C/E /I 20	CNF (g)	3.75	3.75		3.75	3.75
C/F7:3/L1:3-20	FeCo (g)	0.0126	0.0054		0.0054	0.0126
	LM (g)		0.0072	0.0216	0.0072	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{8:2}/L_{1:3}$ -20	FeCo (g)	0.0144	0.0036		0.0036	0.0144
	LM (g)		0.0072	0.0216	0.0072	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{9:1}/L_{1:3}$ -20	FeCo (g)	0.0162	0.0018		0.0018	0.0162
	LM (g)		0.0072	0.0216	0.0072	

Table S3 The formula of the C/F $_{8:2}/L_{1:3}\mbox{-}z$ composite films with different content of LM

Sample		Absorption	Transition	Reflection	Transition	Absorption
		layer	layer	layer	layer	layer
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{8:2}/L_{1:3}$ -10	FeCo (g)	0.009	0.009		0.009	0.009
	LM (g)		0.0072	0.0216	0.0072	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{8:2}/L_{1:3}$ -15	FeCo (g)	0.0108	0.0072		0.0072	0.0108
	LM (g)		0.0072	0.0216	0.0072	
	CNF (g)	3.75	3.75		3.75	3.75
$C/F_{8:2}/L_{1:3}$ -20	FeCo (g)	0.0126	0.0054		0.0054	0.0126
	LM (g)		0.0072	0.0216	0.0072	
	CNF (g)	3.75	3.75		3.75	3.75
C/F _{8:2} /L _{1:3} -25	FeCo (g)	0.0144	0.0036		0.0036	0.0144
	LM (g)		0.0072	0.0216	0.0072	
C/F _{8:2} /L _{1:3} -30	CNF (g)	3.75	3.75		3.75	3.75
	FeCo (g)	0.0162	0.0018		0.0018	0.0162
	LM (g)		0.0072	0.0216	0.0072	

Fig. S1 EDS mapping images of the scanning of FeCo nanoparticles.

Fig. S2 EDS mapping images of the scanning of blend C/F/L-20 film and C/F $_{8:2}$ /L $_{1:3}$ -20 composite films

Fig. S3 (a) EMI SE, (b) SE_T, SE_R, and SE_A of pure CNF and blend C/F/L-20 film. (c) EMI SE of C/F_{x:y}/L_{1:3}-20 composite films. (d) EMI SE of C/F_{8:2}/L_{1:3}-z composite films with different content of LM.

Table S4 The detailed information is listed of the filler content, thickness, and normalized SE of

composite film.

Sample	Conductive Filler	Filler Content (wt%)	Thickness (mm)	EMI <i>SE</i> (dB)	Normalized SE (dB mm ⁻¹)	Ref.
CP/PGEF/Fe ₃ O ₄	СР	30	1	48.9	48.9	[32]
PLLA/graphene	Graphene	5.61	0.3	41.7	139	[33]
PVDF/graphene/Ni	Graphene	10	0.7	51.4	73.43	[34]
Cu-Ni/Wood	Cu	23	0.4	57.4	143.5	[35]
CI/Ti ₃ C ₂ T _x /PVDF	$Ti_3C_2T_x$	10	0.4	42.8	107	[36]
CNF/Fe ₃ O ₄ /LM/GNPs	LM/GNPs	40	0.233	46.6	202.6	[37]
SR/graphene	Graphene	3	0.35	30.42	86.9	[38]

CNF/rGO	rGO	50	3.023	32	10.59	[39]
PI/BNNS/Ti ₃ C ₂ T _x	$Ti_3C_2T_x$	6	0.3	49.2	164	[40]
CNF/FeCo/LM	LM	20	0.170	39.32	231.29	This
						work

Fig. S4 (a) Stress-strain curves of pure CNF and blend films. (b) Stress-strain curves of the $C/F_{x:y}/L_{1:3}$ -20 composite films. (c) Toughness of pure CNF and blend film. (d) Stress-strain curves of the $C/F_{8:2}/L_{1:3}$ -z composite films.

films	with	different	LM	content.

Sample	Stress (MPa)	Strain (%)	Toughness (M.J. m ⁻³)	Conductivity filler content (wt%)	EMI/conductive filler content (dB/%)	Ref.
CNF/Fe ₃ O ₄ /LM/GNPs	55.27	12.47	2.72	40	1.17	[33]
MXene-xanthan	116.48	1.22	0.84	67	0.46	[42]
CNF@MXene	112.5	4.3	2.7	50	0.79	[43]
NFC/Fe ₃ O ₄ &CNT/PEO	36.03	19.1	2.98	38.7	0.88	[44]
MXene/ANF	124.1	8.1	6.3	40	1.02	[45]
MXene/UANF	156.9	3.34	2.9	60	0.53	[46]
MXene@HCNT	126.2	3.2	5.5	50	1.44	[47]
PEDOT: PSS/MXene	38.6	0.28	~0.05	30	1.35	[48]
MXene/ANF	158.3	5.03	5.77	80	0.67	[49]
$C/F_{x:y}/L_{m:n}\text{-}z$	56.28	21.47	7.2	20	1.97	This work

 Table S5 The detailed information is listed of the stress, strain, toughness, filler content, and EMI

 SE/filler content