Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Rational Design of Janus MXene Monolayers as Promising

Frameworks for High-performance Sodium Metal Anodes

Shengbo Wang^{a#}, Ziang Ren^{a#}, Jinsen Zhang^a, Shihui Zou^a, Huadong Yuan^a, Jianmin Luo^a, Yujing Liu^a, Jianwei Nai^a, Yao Wang^{*ab}, Xinyong Tao^a

^a College of Materials Science and Engineering, Zhejiang University of Technology,

Hangzhou, 310014, China

^b Moganshan Research Institute at Deqing County Zhejiang University of Technology,

Huzhou, 313000, China

[#] These authors contributed equally to this work.

*Corresponding author: <u>wangyao@zjut.edu.cn</u>.

Fig. S1. (a) Side view and (b) top view of the MM'C Janus MXene structures. The dark yellow, light blue, and brown spheres represent M, M', and C atoms, respectively.

Fig. S2. Phonon spectra of (a) ZrTiCS₂, (b) HfTiCS₂, (c) ZrHfCS₂, (d) VNbCO₂, (e) VTaCO₂, and (f) NbTaCO₂.

Fig. S3. Variation in energy over 10 ps during the AIMD simulation at 300 K of (a) ZrTiCS₂, (b) HfTiCS₂, (c) ZrHfCS₂, (d) VNbCO₂, (e) VTaCO₂, and (f) NbTaCO₂ structure.

Fig. S4. Charge density difference (e⁻ Å⁻³) of the Na atom on ZrTiCS₂, ZrHfCS₂, VNbCO₂, and NbTaCO₂. The isosurface level is set to be 0.0006 e⁻ Å⁻³. The cyan and yellow regions indicate electron depletion and accumulation, respectively.

Fig. S5. Single-Na adsorption DOS of (a) ZrTiCS₂ (b) HfTiCS₂, (c) HfZrCS₂, (d) VNbCO₂, (e) VTaCO₂, and (f) NbTaCO₂. The Fermi level is set to zero.

Fig. S6. (a-c) PDOS of the adsorbed Na atom and its surrounding S atom in ZrTiCS₂, HfTiCS₂, and HfZrCS₂, (d-f) PDOS of the adsorbed Na atom and its surrounding O atom in VNbCO₂, VTaCO₂, and NbTaCO₂. The Fermi level is set to zero.

Fig. S7. Snapshots of AIMD simulations of Na₁₃ on ZrTiCS₂, HfZrCS₂, VNbCO₂, VTaCO₂, and NbTaCO₂ Janus Mxene at 300 K.

Fig. S8. The four-state structure of the Na_{13} cluster on the HfTiCS₂ Janus MXene surface during the 3D-to-2D transition at 300 K.

Fig. S9. (a) The COHP of Na5 atom within the Na_{13} clusters in interacting with surface S atoms in configuration 1. (b) The COHP of Na5 atom within the Na_{13} cluster in interacting with surface S atoms in configuration 4.

Fig. S10. Snapshots of AIMD simulations of different Na₁₃ conformations on HfTiCS₂ Janus MXene at 300 K.(a) Conformation 1. (b) Conformation 2.

Fig. S11. (a) and (b) Snapshots of AIMD simulations of Na_{13} on HfTiCS₂ Janus MXene at 400 K and 500K. (c) and (d) Snapshots of AIMD simulations of Na_{13} on vacancy-defect and doped-defect HfTiCS₂ Janus MXene at 300 K

	Lattice (Å)	d_{M-C} (Å)	$d_{M'-C}\left(\text{\AA}\right)$	$d_{M\!-\!S}(\text{\AA})$	$d_{M'\!-\!S}\left(\text{\AA}\right)$
ZrTiCS ₂	3.31	2.33	2.26	2.53	2.41
HfTiCS ₂	3.29	2.31	2.26	2.50	2.41
ZrHfCS ₂	3.43	2.4	2.37	2.53	2.41
Ti_2CS_2	3.16	2.19	/	2.40	/
Zr_2CS_2	3.45	2.4	/	2.53	/
Hf_2CS_2	3.41	2.37	/	2.51	/

Table S2. Lattice parameter, lengths of M–C (d_{M-C}), M'–C ($d_{M'-C}$), M–O (d_{M-O}), and M'–O ($d_{M'-O}$) bonds of All MM'CO₂, M2CO₂, and M₂'CO₂ MXenes are shown.

	a (Å)	d_{M-C} (Å)	$d_{M'-C}$ (Å)	d_{M-O} (Å)	$d_{M'-O}$ (Å)
VNbCO ₂	2.98	2.08	2.14	2.03	2.07
VTaCO ₂	2.99	2.09	2.13	2.03	2.08
NbTaCO ₂	3.08	2.22	2.15	2.11	2.1
V_2CO_2	2.88	2.04	/	1.95	/
Nb ₂ CO ₂	3.10	2.19	/	2.09	/
Ta ₂ CO ₂	3.12	2.19	/	2.1	/

Table S3. Binding energies (unit: eV) of Na-adatom on Janus MXenes at different sites. The largest

	E_{T1}	$E_{\rm H1}$	E_{H2}	E_{T2}	E_{h1}	E_{h2}
ZrTiCS ₂	-2.08	-2.62	-2.63	-1.98	-2.50	-2.50
HfTiCS ₂	Unstable	-2.47	-2.51	-1.94	-2.49	-2.46
ZrHfCS ₂	Unstable	-2.47	-2.52	-1.89	-2.43	-2.46
	E _{T3}	E _{H3}	E_{H4}	E _{T4}	E _{h3}	E _{h4}
VNbCO ₂	-2.59	-3.09	-3.01	-1.53	-1.93	-2.01
VTaCO ₂	-2.29	-2.79	-2.71	-0.88	-1.27	-1.35
NbTaCO ₂	-2.06	-2.54	-2.43	-0.88	-1.25	-1.34

binding energies were highlighted.

	$\Delta Q_m(\mathbf{e})$	$\Delta Q_{m'}(\mathbf{e})$
ZrTiCS ₂	-1.83	-1.63
HfTiCS ₂	-1.89	-1.62
ZrHfCS ₂	-1.88	-1.90
Ti ₂ CS ₂	-1.64	/
Zr ₂ CS ₂	-1.89	/
Hf_2CS_2	-1.92	/

Table S4. The alteration in the charge state of M (M') atom following the formation of S-terminated MXenes

Table S5. The alteration in the charge state of M (M') atom following the formation of O-terminated

MXenes

	$\Delta Q_m(\mathbf{e})$	$\Delta Q_m(\mathbf{e})$
VNbCO ₂	-1.66	-2.07
VTaCO ₂	-1.66	-2.16
NbTaCO ₂	-1.85	-2.21
V ₂ CO ₂	-1.75	/
Nb ₂ CO ₂	-2.05	/
Ta ₂ CO ₂	-2.13	/

Table S6. Calculated electric charge transferred (ΔQ) from Na-adatom to Janus MXenes surface.

	$ extsf{D} Q_m \left(\mathbf{e} ight)$
ZrTiCS ₂	0.886
HfTiCS ₂	0.885
ZrHfCS ₂	0.882
VNbCO ₂	0.911
VTaCO ₂	0.910
NbTaCO ₂	0.909

	H (Å)
VNbCO ₂	2.750
VTaCO ₂	2.760
NbTaCO ₂	2.830
ZrTiCS ₂	3.430
HfTiCS ₂	3.540
ZrHfCS ₂	3.510

Table S7. The distance (H) between the adsorbed Na atom and the M transition metal layer

 in various Janus MXenes

Table S8. Binding energy (eV) of Na clusters with different structures and Janus MXenes

	Configuration 1	Configuration 2	Configuration 3	Configuration 4
ZrTiCS ₂	-0.13	-0.72	-1.19	-1.21
HfTiCS ₂	-0.12	-0.77	-1.11	-1.12
ZrHfCS ₂	-0.11	-0.78	-1.18	-1.20
VNbCO ₂	-0.20	-0.83	-1.13	-1.23
VTaCO ₂	-0.22	-0.92	-1.11	-1.12
NbTaCO ₂	-0.14	-0.78	-0.89	-0.92

Table S9. The average charge (ΔQ) transferred to the surface of Janus MXenes by a single Na atom within the Na₁₃ cluster.

	Configuration 1	Configuration 2	Configuration 3	Configuration 4
ZrTiCS ₂	0.22	0.47	0.59	0.73
HfTiCS ₂	0.21	0.42	0.55	0.77
ZrHfCS ₂	0.21	0.45	0.60	0.82
VNbCO ₂	0.22	0.42	0.61	0.76
VTaCO ₂	0.22	0.48	0.63	0.74
NbTaCO ₂	0.22	0.41	0.52	0.74