Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

How the Balance between *CO and *H Intermediates in Dual Atom Catalysts Boosts Selectivity for Hydrocarbons

Tao Yu^{a,b}, Xiang Li^c, Xiaomao Liu^c, Jinsheng Li^{a,b}, Junhua You^d, Xuanwen Liu^{a,b,*}, Rui Guo^{a,b,*}

^a School of Materials Science and Engineering, Northeastern University Shenyang 110819, China

^b School of Resources and Materials, Northeastern University at Qinhuangdao Qinhuangdao 066004, China

^c Qinhuangdao Customs Technical Center Qinhuangdao 066004 (PR China)

^d School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

Corresponding authors:

lxw@neuq.edu.cn

guorui@neuq.edu.cn

Calculation details

The Gibbs free energy change (ΔG) was defined as [1]:

$$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S + \Delta G_{\text{pH}} + \Delta G_{\text{U}}$$
(1)

where ΔE is the electronic energy difference directly obtained from DFT calculations, ΔE_{ZPE} is the change in zero-point energy, *T* is the temperature (298.15 k), and ΔS is the entropy change. ΔG_U = *-neU*, where *n* is the number of transferred electrons and *U* is the electrode potential. ΔG_{pH} is the correction of the H⁺ free energy by the concentration; $\Delta G_{pH} = k_B T \times In10 \times pH$, where k_B is the Boltzmann constant, and the value of pH was set to be zero foracidic conditions. Zero-point energies and total entropies of molecules were computed from the vibrational frequencies. The vibrational modes of the adsorbate were computed explicitly, while the catalyst sheet was fixed (assuming that the vibrations of the substrate were negligible).

The adsorption energies (E_{ads}) were calculated by the following equation:

$$E_{\rm ads} = E_{\rm A-S} - E_{\rm S} - E_{\rm A}$$

(2)

where E_{A-S} , E_S , and E_A are the total energies of the adsorbate-substrate (A–S) complex, the substrate (S), and the absorbate (A), respectively.

Support Pictures

Figure S1.

Figure S1. Initial optimized structures: (a) FeM₁-N₆C, (b) FeM₂-N₆C.

Figure S2. Charge density difference plots for the initial structure of FeM-N₆C: (a) FeM₁-N₆C, (b) FeM₂-N₆C. Yellow color represents an increase in electron density and green color represents a decrease in electron density.

Figure S3. PDOS maps of each atom in the initial structure of FeM-N₆C: (a) FeTi-N₆C, (b) FeZr-N₆C, (c) FeHf-N₆C, (d) FeFe-N₆C, (e) FeCo-N₆C, (f) FeCu-N₆C. (The illustration in the bottom left corner is an enlarged view of the vicinity of the Fermi level)

Figure S4. Calculated adsorption energies of *CO in FeM_2 -N₆C catalysts: (a) FeV-N₆C, (b) FeMo-N₆C, (c) FeFe-N₆C, (d) FeCo-N₆C, (e) FeCu-N₆C.

Figure S5.

Figure S5. PDOS plots of each atom before and after adsorption of *CO intermediates on FeM₁-N₆C catalysts: (a) FeY-N₆C, (b) FeTi-N₆C, (c) FeZr-N₆C, (d) FeHf-N₆C.

Figure S6.

Figure S6. PDOS plots of each atom before and after adsorption of *CO intermediates on FeM_2-N_6C catalysts: (a) FeMo-N₆C, (b) FeFe-N₆C, (c) FeCo-N₆C, (d) FeCu-N₆C.

Figure S7.

Figure S7. Adsorption energy calculations for *H intermediates: (a) FeY-N₆C, (b) FeTi-N₆C, (c) FeZr-N₆C, (d) FeHf-N₆C.

Figure S8.

Figure S8. Adsorption energy calculations for *H intermediates: (a) FeMo-N₆C, (b) FeFe-N₆C, (c) FeCo-N₆C, (d) FeCu-N₆C.

Figure S9.

Figure S9. Free energy calculations for the *CO \rightarrow *CHO reaction processes: (a) FeY-N₆C, (b) FeZr-N₆C, (c) FeHf-N₆C.

Figure S10.

Figure S10. Free energy calculations for the *CO \rightarrow *CHO reaction processes: (a) FeV-N₆C, (b) FeMo-N₆C, (c) FeFe-N₆C, (d) FeCo-N₆C, (c) FeCu-N₆C.

Figure S11.

Figure S11. Relationship between $\Delta G_{(*CO+*H)}$ and $\Delta G_{(*CHO)}$.

Figure S12.

Figure S12. Transition state calculations. (a) FeY-N₆C, (b) FeTi-N₆C, (c) FeZr-N₆C, (d) FeHf-N₆C.

Support Forms

Catalyst	Metal	Atomic populations	Catalyst	Metal	Atomic populations
Catalyst	element	(Mulliken) charge (e)	Catalyst	element	(Mulliken) charge (e)
FeSc-N ₆ C	Sc	1.81	FeV-N ₆ C	V	1.51
EaV N C	V	1.04	FeMo-	Ma	1.20
re1-N ₆ C	I	1.94	N ₆ C	IVIO	1.39
FeTi-N ₆ C	Ti	1.68	FeFe-N ₆ C	Fe	1.22
FeZr-N ₆ C	Zr	1.89	FeCo-N ₆ C	Со	1.22
FeHf-	IIC	1.0	E G N G	G	1.2
N ₆ C	HI	1.8	recu-N ₆ C	Cu	1.3

Table S1. Atomic populations (Mulliken) charge of the M metal in FeM-N₆C.

Table S2. Orbital Populations of the d orbitals of the metal atoms of the initial structure of FeM-N $_6$ C.

Catalyst	Atom	Orbital	Up	Down	Spin
		dz^2	0.949	0.136	0.813
		\mathbf{d}_{zy}	0.981	0.057	0.924
Fe-N-C	Fe	\mathbf{d}_{zx}	0.948	0.858	0.091
		$d_{x^2-y^2}$	0.984	0.889	0.095
		d_{xy}	0.43	0.33	0.101

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.093	0.093	-0.001
		\mathbf{d}_{zy}	0.101	0.099	0.002
	Sc	\mathbf{d}_{zx}	0.116	0.121	-0.005
		$d_{x^2-y^2}$	0.127	0.094	0.033
FeSc-		d_{xy}	0.222	0.222	0
N ₆ C		d_{z^2}	0.941	0.05	0.891
		\mathbf{d}_{zy}	0.925	0.804	0.121
	Fe	d_{zx}	0.948	0.833	0.115
		$d_{x^2-y^2}$	0.97	0.222	0.748
		d_{xy}	0.476	0.43	0.046

Catalyst	Ion	Orbital	Up	Down	Spin
		dz^2	0.089	0.09	-0.001
		\mathbf{d}_{zy}	0.114	0.114	0
	Y	\mathbf{d}_{zx}	0.129	0.13	-0.001
		$d_{x^2-y^2}$	0.102	0.105	-0.003
FeY-		\mathbf{d}_{xy}	0.174	0.175	0
N ₆ C		dz^2	0.921	0.641	0.28
		\mathbf{d}_{zy}	0.118	0.899	-0.781
	Fe	dzx	0.944	0.35	0.594
		$d_{x^2-y^2}$	0.955	0.946	0.009
		d _{xy}	0.352	0.449	-0.097

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.197	0.201	-0.004
		\mathbf{d}_{zy}	0.152	0.176	-0.023
	Ti	\mathbf{d}_{zx}	0.18	0.177	0.004
		$d_{x^2-y^2}$	0.306	0.349	-0.043
FeTi-		\mathbf{d}_{xy}	0.299	0.301	-0.002
N_6C		dz ²	0.937	0.135	0.803
		\mathbf{d}_{zy}	0.18	0.968	-0.788
	Fe	\mathbf{d}_{zx}	0.918	0.857	0.061
		$d_{x^2-y^2}$	0.909	0.874	0.034
		d_{xy}	0.418	0.399	0.019

Catalyst	Ion	Orbital	Up	Down	Spin
		dz ²	0.192	0.202	-0.009
		\mathbf{d}_{zy}	0.197	0.191	0.005
	Zr	\mathbf{d}_{zx}	0.183	0.184	-0.001
		$d_{x^2-y^2}$	0.258	0.288	-0.03
FeZr-		\mathbf{d}_{xy}	0.271	0.271	0
N_6C		d_{z^2}	0.92	0.881	0.038
		\mathbf{d}_{zy}	0.955	0.091	0.864
	Fe	\mathbf{d}_{zx}	0.962	0.089	0.873
		$d_{x^2-y^2}$	0.938	0.907	0.031
		d _{xy}	0.488	0.342	0.147

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.197	0.203	-0.006
		dzy	0.189	0.184	0.004
	Hf	dzx	0.185	0.186	-0.001
		$d_{x^2-y^2}$	0.23	0.251	-0.021
Eallf N C		\mathbf{d}_{xy}	0.256	0.255	0
reni-N ₆ C		d_{z^2}	0.921	0.905	0.016
		\mathbf{d}_{zy}	0.943	0.091	0.852
	Fe	dzx	0.964	0.067	0.897
		$d_{x^2-y^2}$	0.942	0.911	0.031
		d_{xy}	0.494	0.329	0.165

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.195	0.06	0.135
		\mathbf{d}_{zy}	0.753	0.096	0.656
	V	\mathbf{d}_{zx}	0.915	0.07	0.845
		$d_{x^2-y^2}$	0.418	0.279	0.139
FeV-		\mathbf{d}_{xy}	0.368	0.293	0.075
N ₆ C		d_{z^2}	0.928	0.933	-0.005
		\mathbf{d}_{zy}	0.972	0.07	0.902
	Fe	dzx	0.969	0.074	0.895
		$d_{x^2-y^2}$	0.894	0.904	-0.011
		d_{xy}	0.468	0.359	0.109

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.856	0.127	0.729
		\mathbf{d}_{zy}	0.432	0.233	0.199
	Mo	\mathbf{d}_{zx}	0.684	0.54	0.145
		$d_{x^2-y^2}$	0.498	0.452	0.046
E-M- N.C		d_{xy}	0.395	0.369	0.025
reivio-in ₆ C		d_{z^2}	0.937	0.869	0.069
		\mathbf{d}_{zy}	0.962	0.062	0.899
	Fe	\mathbf{d}_{zx}	0.953	0.328	0.625
		$d_{x^2-y^2}$	0.883	0.816	0.068
		\mathbf{d}_{xy}	0.465	0.346	0.118

Catalyst	Ion	Atom	Orbital	Up	Down	Spin
			d_{z^2}	0.931	0.047	0.884
			\mathbf{d}_{zy}	0.933	0.929	0.005
	Fe	2	dzx	0.942	0.875	0.067
			$d_{x^2-y^2}$	0.737	0.477	0.26
FeFe-			d_{xy}	0.443	0.372	0.071
N ₆ C			d_{z^2}	0.935	0.938	-0.002
			\mathbf{d}_{zy}	0.974	0.108	0.866
	Fe	1	\mathbf{d}_{zx}	0.971	0.149	0.822
			$d_{x^2-y^2}$	0.805	0.82	-0.016
			d_{xy}	0.488	0.384	0.104

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.964	0.114	0.85
		\mathbf{d}_{zy}	0.97	0.92	0.05
	Co	dzx	0.968	0.931	0.037
		$d_{x^2-y^2}$	0.99	0.834	0.156
FeCo-		\mathbf{d}_{xy}	0.471	0.406	0.065
N ₆ C		d_{z^2}	0.95	0.895	0.056
		\mathbf{d}_{zy}	0.976	0.109	0.866
	Fe	dzx	0.968	0.139	0.829
		$d_{x^2-y^2}$	0.99	0.562	0.428
		\mathbf{d}_{xy}	0.485	0.403	0.082

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.984	0.985	0
		\mathbf{d}_{zy}	0.993	0.984	0.009
	Cu	dzx	0.987	0.984	0.004
		$d_{x^2-y^2}$	0.996	0.971	0.025
FeCu-		\mathbf{d}_{xy}	0.993	0.591	0.402
N ₆ C		d_{z^2}	0.949	0.92	0.029
		d_{zy}	0.971	0.114	0.857
	Fe	dzx	0.97	0.107	0.862
		$d_{x^2-y^2}$	0.989	0.54	0.449
		d_{xy}	0.518	0.388	0.13

Table S3. Orbital Populations of metal active sites after adsorption of *CO by FeM-N₆C.

Catalyst	Ion	Orbital	Up	Down	Spin
	dz ² 0.421	0.421	0		
E.N.C		\mathbf{d}_{zy}	0.847	0.847	0
Fe-N-C	Fe	d_{zx}	0.817	0.817	0
*CO(Fe)		$d_{x^2-y^2}$	0.975	0.975	0
		d_{xy}	0.344	0.344	0

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.52	0.518	0.001
FeSc-		d_{zy}	0.824	0.823	0.001
N ₆ C	Fe	dzx	0.726	0.713	0.013
*CO(Fe)		$d_{x^2-y^2}$	0.93	0.928	0.002
		d_{xy}	0.399	0.399	0

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.639	0.454	0.185
		d_{zy}	0.842	0.837	0.005
$*CO(E_{\rm c})$	Fe	d_{zx}	0.864	0.667	0.197
*CO(Fe)		$d_{x^2-y^2}$	0.764	0.908	-0.145
		d_{xy}	0.419	0.39	0.029

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.532	0.532	0
Eat: N.C.		d_{zy}	0.823	0.823	0
$*CO(E_{\rm r})$	Fe	dzx	0.735	0.735	0
*CO(Fe)		$d_{x^2-y^2}$	0.891	0.891	0
		dxy	0.417	0.417	0

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.52	0.52	0
E ₂ 7 ₂ N C		\mathbf{d}_{zy}	0.835	0.835	0
$FCD(E_{0})$	Fe	dzx	0.741	0.741	0
*CO(Fe)		$d_{x^2-y^2}$	0.9	0.9	0
		d_{xy}	0.407	0.407	0

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.518	0.518	0
FeHf-		d_{zy}	0.828	0.828	0
N ₆ C	Fe	dzx	0.741	0.741	0
*CO(Fe)		$\mathbf{d}_{x^2-y^2}$	0.908	0.908	0
		d_{xy}	0.405	0.405	0

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.259	0.22	0.04
E-VNC		dzy	0.646	0.122	0.524
$rev - N_6 C$	V	dzx	0.574	0.53	0.044
*CO(V)		$\mathbf{d}_{\mathbf{x}^2-\mathbf{y}^2}$	0.348	0.322	0.026
		d_{xy}	0.336	0.304	0.032

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.461	0.472	-0.011
FeMo-		d_{zy}	0.549	0.593	-0.044
N ₆ C	Mo	d_{zx}	0.537	0.532	0.006
*CO(Mo)		$\mathbf{d}_{x^2-y^2}$	0.426	0.473	-0.047
		dxy	0.372	0.375	-0.002

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.603	0.456	0.147
FeFe-		d_{zy}	0.859	0.831	0.028
N ₆ C	Fe	dzx	0.835	0.685	0.15
*CO(Fe)		$d_{x^2-y^2}$	0.825	0.847	-0.022
		a l	0.200	0.200	0.001
		axy	0.399	0.399	0.001
		U xy	0.399	0.399	0.001
Catalyst	Ion	Orbital	U.399	Down	Spin
Catalyst	Ion	Orbital dz ²	Up 0.82	Down 0.248	Spin 0.572
Catalyst FeCo-	Ion	dxy Orbital dz ² dzy	Up 0.82 0.895	0.399 Down 0.248 0.853	Spin 0.572 0.042
Catalyst FeCo- N ₆ C	Ion Fe	dxy Orbital dz ² dzy dzx	Up 0.82 0.895 0.881	0.399 Down 0.248 0.853 0.781	Spin 0.572 0.042 0.1
Catalyst FeCo- N ₆ C *CO(Fe)	Ion Fe	dxy Orbital dz ² dzy dzx dx ² -y ²	Up 0.82 0.895 0.881 0.97	Down 0.248 0.853 0.781 0.387	Spin 0.572 0.042 0.1 0.583

Catalyst	Ion	Orbital	Up	Down	Spin
		d_{z^2}	0.891	0.384	0.507
FeCu-		d_{zy}	0.871	0.822	0.049
N ₆ C	Fe	dzx	0.897	0.543	0.354
*CO(Fe)		$d_{x^2-y^2}$	0.979	0.392	0.587
		d _{xy}	0.459	0.386	0.073

$Fe(FeCo-N_6C)$					
without aqueous solvent layer					
Hubbard U (eV) Energy (eV)					
2	-11481.4085				
2.5	-11481.4091				
3	-11481.1429				
3.5	-11480.9033				

Table S5 Calculation data for $E_{ads (*CO)}$

Catalyst	E* (eV)	$E_{*CO(Fe)}(eV)$	$E_{*CO(M)}(eV)$
H ₂	-31.1850392		
CO	-594.083018		
Fe-N ₄ C	-15203.2525	-15800.9361	
FeSc-N ₆ C	-16372.9073	-16967.7628	
FeY-N ₆ C	-16172.6574	-16767.3274	
FeTi-N ₆ C	-16692.6075	-17287.4291	
FeZr-N ₆ C	-16392.3184	-16987.4195	
FeHf-N ₆ C	-22968.094	-23563.3161	
FeV-N ₆ C	-17049.3603	-17644.2186	-17644.2753
FeMo-			
N ₆ C	-17/031.7814	-17626.7259	-17627.4129
FeFe-N ₆ C	-15959.8801	-16554.7662	-16554.5161
FeCo-N ₆ C	-16791.0328	-16791.5984	-16791.2373
FeCu-N ₆ C	-16777.4508	-17372.2989	-17371.1829

Table S6 Calculation data for $E_{ads\,(^{\ast}H)}$

Catalyst	E* (eV)	$E_{*H(Fe)}(eV)$	$E_{*H(M)}(eV)$	$E_{*H(N1)}(eV)$	$E_{*H(N2)}(eV)$	$\underset{(^{*}H_{2}O \rightarrow ^{*}H(N2)+^{*}OH)}{E_{*}H_{2}O \rightarrow ^{*}H(N2)+^{*}OH)}$
FeSc-N ₆ C	-16372.9073	-16388.1061		-16386.9852	-16388.5737	-16372.9254
FeY-N ₆ C	-16172.6574	-16187.79		-16187.01	-16188.33	-16172.5036
FeTi-N ₆ C	-16692.6075	-16708.1944		-16707.3504	-16707.8465	-16692.6077
FeZr-N ₆ C	-16392.3184	-16407.857		-16407.006	-16407.626	-16392.905
FeHf-N ₆ C	-22968.094	-22983.4976		-22982.6955	-22968.5167	-22968.5167
FeV-N ₆ C	-17049.3603	-17064.6079	-17064.7239	-17064.3497	-17064.7488	
FeMo- N ₆ C	-17031.7814	-17047.2806	-17048.0224	-17046.6895	-17047.0891	
FeFe-N ₆ C	-15959.8801	-15975.4126	-15975.3516	-15974.7435	-15975.626	
FeCo-N ₆ C	-16196.9809	-16212.3093	-16212.2815	-16211.7863	-16212.5583	
FeCu-N ₆ C	-16777.4508	-16792.8657	-16791.9672	-16792.3306	-16793.8899	

Catalyst	Path	E _{*CO} (eV)	E _{*CO+*H} (eV)	E _{*CHO} (eV)
FeSc-N ₆ C	*CO+H++e=*CO+*H(N1)=*CHO	-16967.7628	-16982.3269	-16983.4605
	*CO+H++e=*CO+*H(N2)=*CHO	-16967.7628	-16983.332	-16983.6956
	$*CO+*H_2O(Sc)=*CO+*H(N2)+*OH(Sc)=*CHO+*OH(Sc)$	-16967.7628	-16967.7335	-16967.4723
	*CO+*H ₂ O(Sc)=*CHO+*OH(Sc)	-16967.7628		-16966.8806
FeY-N ₆ C	*CO+H++e ⁻ =*CO+*H(N1)=*CHO	-16767.3274	-16781.8907	-16782.8657
	*CO+H++e=*CO+*H(N2)=*CHO	-16767.3274	-16782.9996	-16782.8842
	$*CO+*H_2O(Y)=*CO+*H(N2)+*OH(Y)=*CHO+*OH(Y)$	-16767.3274	-16767.2575	-16766.9592
	*CO+*H ₂ O(Y)=*CHO+*OH(Y)	-16767.3274		-16766.4864
FeTi-N ₆ C	*CO+H++e=*CO+*H(N1)=*CHO	-17287.4291	-17302.0918	-17302.22
	*CO+H++e=*CO+*H(N2)=*CHO	-17287.4291	-17302.5976	-17302.8599
	*CO+*H ₂ O(Ti)=*CO+*H(N2)+*OH(Ti)=*CHO+*OH(Ti)	-17287.4291	-17287.2903	-17287.5108
	*CO+*H ₂ O(Ti)=*CHO+*OH(Ti)	-17287.4291		-17287.4764
	*CO+H++e=*CO+*H(N1)=*CHO	-16987.4195	-17002.0384	-17003.0869
FeZr-N ₆ C	*CO+H++e=*CO+*H(N2)=*CHO	-16987.4195	-17002.7397	-17003.3808
	$*CO+*H_2O(Zr)=*CO+*H(N2)+*OH(Zr)=*CHO+*OH(Zr)$	-16987.4195	-16987.286	-16987.77
	*CO+*H ₂ O(Zr)=*CHO+*OH(Zr)	-16987.4195		-16987.4062
FeHf-N ₆ C	*CO+H++e=*CO+*H(N1)=*CHO	-16987.4195	-17002.0384	-17003.0869
	*CO+H++e=*CO+*H(N2)=*CHO	-16987.4195	-17002.7397	-23579.2775
	*CO+*H ₂ O(Hf)=*CO+*H(N2)+*OH(Hf)=*CHO+*OH(Hf)	-16987.4195	-23563.2453	-23563.2196
	*CO+*H ₂ O(Hf)=*CHO+*OH(Hf)	-16987.4195		-23563.1589
FeV-N ₆ C	*CO+H++e=*CO+*H(N1)=*CHO	-17644.2753	-17658.9761	-17659.449
	*CO+H++e=*CO+*H(N2)=*CHO	-17644.2753	-17659.5432	-17659.3942
	*CO+H++e=*CO+*H(Fe)=*CHO	-17644.2753	-17659.4668	-17659.414
FeMo- N ₆ C	*CO+H++e=*CO+*H(N1)=*CHO	-17627.4129	-17642.0176	-17643.1212
	*CO+H++e=*CO+*H(N2)=*CHO	-17627.4129	-17642.2998	-17643.0177
	*CO+H++e=*CO+*H(Mo)=*CHO	-17627.4129	-17642.7174	-17643.2203
FeFe-N ₆ C	*CO+H++e=*CO+*H(N1)=*CHO	-16554.7662	-16568.9874	-16570.2532
	*CO+H++e=*CO+*H(N2)=*CHO	-16554.7662	-16570.4175	-16570.547
	*CO+H++e=*CO+*H(Fe2)=*CHO	-16554.7662	-16570.031	-16570.2281
FeCo-N ₆ C	*CO+H++e=*CO+*H(N1)=*CHO	-16791.5984	-16806.002	-16807.5837
	*CO+H++e=*CO+*H(N2)=*CHO	-16791.5984	-16807.3053	-16807.6062
	*CO+H++e-=*CO+*H(Co)=*CHO	-16791.5984	-16807.0559	-16807.5862
FeCu-N ₆ C	*CO+H++e=*CO+*H(N1)=*CHO	-17372.2989	-17386.6752	-17388.3584
	*CO+H++e=*CO+*H(N2)=*CHO	-17372.2989	-17388.287	-17388.2737
	*CO+H++e=*CO+*H(Cu)=*CHO	-17372.2989	-17386.2548	-17388.2934

Notes and references:

1 Y. L. Wang, Y. Tian, Z. L. Lang, W. Guan and L. K. Yan, J. Mater. Chem. A, 2018, 6, 21056–21063.