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Section S1: Computational Methods: 

(a)DFT details: 

(i) The convex hull distance: This quantity denotes the stability upon decomposition into any binary 

and ternary competing phases, according to the chemical reaction: Ehull = Ef (predicted phase) – Ef 

(competing phases). Ehull is calculated using the PYMATGEN1 library, which aggregates the PBE 

energies of the competing phases available on the Materials Project.2 
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(ii) Formation energy: The formula used to calculate the formation energy of AMSe3 is as 

follows: Eform/atom
 = 1/5[E(AMSe3) – 1 x E(A) – 1x E(M) – 3× E(Se)]. Where E(AMSe3) is the 

total energy of the AMSe3 compound and E(A), E(M), and E(Se) are the chemical potentials 

of A, M, and Se in their respective bulk states calculated using GGA-PBE. This quantity 

determines the stability of the AMSe3 compound with respect to decomposition to elemental 

states of A, M, and Se. 

The reported formation energies and energy-above-hull values are based on data obtained from 

the Materials Project, which employs the Perdew-Burke-Ernzerhof (PBE) exchange-

correlation functional within the generalized gradient approximation (GGA). It should be noted 

that the energy data for many competing phases of metal selenides are unavailable in this 

database. Consequently, computing formation energies and hull stabilities at the HSE06 level 

is not feasible due to the significant computational cost involved. 

(iii) Effective Mass calculation: Effective mass calculations were conducted using PBE 

functional to analyze the electronic properties of the material. It is important to mention that 

although traditional GGA-PBE calculations tend to underestimate band gaps, its overall shape 

of electronic band structures at the GGA level is rather accurate and closely mimics the 

experimental results.3  

For photovoltaic devices, high mobility of photogenerated charge carriers is essential for 

facilitating transport and efficient collection by electrodes. Carrier mobility is predominantly 

influenced by the carrier effective mass, which is calculated from the second derivatives of 

band structure curves near the valence band maximum (VBM, for holes) and conduction band 

minimum (CBM, for electrons), respectively. At the VBM and CBM in ternary selenides 

semiconductors, the band structure E(k) can be locally approximated as follows:  

  𝐸(𝑘) = 𝐸0 +
ℏ2𝑘2

2𝑚∗  



where 𝐸(𝑘) is the energy of an electron at the wavevector k in the band,  𝐸0 is constant, 

describing the edge of band energy. Thus, the effective mass (𝑚∗) can be calculated: 

1

𝑚∗
=

1

ℏ2
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We calculate the direction-dependent effective mass of carriers in the Brillouin zone of periodic 

lattice from one high symmetry point to another high symmetry point.  

(iv) SLME determination: We calculated the selection metric for solar cell absorber, 

spectroscopic limited maximum efficiency (SLME) formulated by Yu and Zunger.4 The SLME 

is the theoretical ratio of the maximum output power density and the total incident solar energy 

density. Established by the Shockley-Queisser (SQ) limit, the SLME method overcomes the 

limitations of conventional S-Q efficiency evaluations, primarily based on band gap values. 

The S-Q efficiency often fails to consider dipole-forbidden direct transitions in certain direct-

gap materials. The SLME incorporates both the absorption coefficient and the material 

thickness, accounting for radiative and non-radiative recombination losses, and considers both 

direct and indirect band gaps. Based on Fermi's golden rule, this approach provides a more 

comprehensive and accurate evaluation of the photovoltaic performance potential compared to 

the SQ limit. These crucial parameters are derived through meticulous computation employing 

the hybrid HSE06 exchange and correlation functional approximation. 

(v) Phase stability:  

For phase stability assessment of 200 selected compounds: Initial exploration of phase stability 

was conducted where each element is represented at least once as A or M to ensure that all 

elements are considered. This results in the inclusivity of the whole chemical space relevant to 

our research. We utilize the crystal structure of the prototypes (mentioned in phase selection 

using prototypes) as templates. We substitute atomic sites with A’s and M’s from our 



previously identified 200 ternary compounds to optimize structures, determining total energies 

for all compounds across different structures. 

For phase stability assessment of screened compounds: To assess the phase stability, we 

computed the total energies of four different crystallographic phases using Density Functional 

Theory (DFT). A dense Monkhorst-Pack k-point grid was used for Brillouin zone sampling. 

Convergence criteria included electronic self-consistency to 10−6 eV and ionic relaxation until 

forces were below 0.01 eV/Å. After full structural optimization, the total energy per formula 

unit for each phase was calculated. The phase with the lowest energy was identified as the most 

stable configuration, providing insight into the thermodynamic preferences under equilibrium 

conditions. 

(vi) Defect Calculation: Materials with deep-level states within the band gap are sensitive to 

point defects, whereas materials that harbour defect states inside the valence or conduction 

band or are situated in proximity (within ≈ kBT) to the band edges are deemed defect-tolerant. 

As defect property evaluation is a step in an elaborate material screening process, we employ 

computationally tractable methods that provide qualitatively correct insights. Single vacancy 

neutral defects (A, M, Se vacancy) were created to study the impact of point defects on the 

electronic structure of selected potential candidates within a large enough 2 x 2 x 2 supercell 

to avoid spurious defect-defect interactions. We use 6 x 3 x 2 Γ-centered Monkhorst-Pack mesh 

for the electronic structure calculations of both pristine and defective cells. We do not perform 

structural optimization for these defective simulation cells as that requires a considerable 

amount of computational resources. The representative calculations depict that structural 

optimization of defective simulation cells does not impact the overall electronic properties. 

Note that we only consider the neutral state of all the defects as our main objective is to identify 

overall defect-tolerant candidates.  



(vii) Phonon Calculations: To establish the dynamic stability of screened AMSe3 compounds, 

we performed phonon calculations using the PHONOPY5 package that utilized a finite 

displacement supercell method for the calculation of forces and construction of the second-

order interatomic force constant matrices from the force-displacement data. We used ([0, 3, 3], 

[1, 0, 1], [1, 1, 0]) supercell transformation matrix to generate relatively isotropic supercells. 

Each supercell of AMSe3 has 120 atoms, and we used a 4 × 4 × 4 k-point mesh to calculate the 

forces on the atoms. 

(viii) Ab initio Molecular Dynamics: To evaluate the structural stability of the screened 

materials at ambient conditions (300K), we perform ab initio molecular dynamics simulations 

considering a large 2 x 2 x 1 supercell. A canonical ensemble with a Nose-Hoover thermostat 

has been applied to simulate the AIMD trajectories of the AMSe3 compounds. The entire 

molecular dynamics simulation lasted 5 ps with a time step of 1 fs. 

(ix) Non Adiabatic Molecular Dynamics:  

The ab initio NAMD simulations of charge carrier cooling, separation, and recombination are 

carried out using the fewest switches surface hopping (FSSH) algorithm6 corrected for 

decoherence7 to describe the slow recombination process. The evolution of the electronic 

subsystem is described within the time-dependent Kohn-Sham theory. We utilized 5 

picoseconds of AIMD trajectories (with a 1 femtosecond timestep) for computations pertaining 

to nonadiabatic coupling at the Γ-point. To examine the electron-hole recombination process 

utilizing the Libra code,8 we analyzed all 5000 snapshots along the trajectories and conducted 

500 stochastic simulations using the DISH process for each geometry. We subsequently 

iterated the nonadiabatic Hamiltonian calculated over the 5 ps trajectory to model the charge 

recombination dynamics occurring over an extended period of 15 ps. We concentrate 

on electron-hole recombination across the band gap, highlighting the dynamic structural 



characteristics that facilitate electron-phonon interactions and restrict carrier lifespan. The 

short-time linear approximation approach was used to analyze the exponential growth function 

and to determine the carrier recombination lifetimes of BaZrSe₃, ScYSe₃, and SrHfSe₃. 

(b) Machine Learning Models: 

The procedure for constructing and validating our machine learning algorithms to predict the 

thermodynamic stability of ternary selenides—covering their formation energy, distance to the 

convex hull, and optoelectronic band gap—involves four distinct phases: (i) Generating an in-

house dataset comprising ternary selenides and relevant features to describe their target 

properties effectively. (ii) Feature engineering, which entails the identification of the most 

relevant attributes that have a strong correlation with the target properties. (iii) Selecting the 

optimal machine learning model among a range of potential algorithms offered by libraries like 

lazypredict, Magpie, and artificial neural networks based on their performance both with and 

without structural information from ternary selenide composite materials in different chemical 

composition spaces. (iv) Assessing the importance of the attributes to the ideal model and 

comprehending their physical connection to the target properties. 

(i) Dataset and feature generation: To assemble the feature matrix for training our machine 

learning models, we utilize an extensive elemental property database containing both physical 

and chemical properties of elements in their atomic state, sourced from the Materials Agnostic 

Platform for Informatics and Exploration (MAGPIE).9 Electronic properties such as Highest 

Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) 

energy levels are computed via Density Functional Theory (DFT), adhering to the relaxation 

and self-consistent field criteria mentioned earlier. Detailed descriptions of elemental features 

can be found in the Section S9. We augment our feature set by performing various mathematical 

operations—such as finding maximum, minimum, difference, weighted average, and standard 



deviation—on corresponding elemental properties of elements A and B while preserving their 

unit dimensionality. For instance, if we possess electronegativity values for both A and B sites, 

we calculate their average, minimum, maximum, and std. deviation values. We also introduce 

novel features to capture structural attributes like the Goldschmidt tolerance factor and 

octahedral factor despite our non-perovskite system. We derive features for the shortest bond 

distances of A-Se and M-Se in the crystal structure of ASe or MSe from available sources in 

OQMD. Additionally, we incorporate mixing enthalpy data for elements in A-M obtained from 

Miedema's model for binary liquids, all of which are collected from MAGPIE. Consequently, 

our feature set comprises a total of 343 attributes. 

(ii) Feature engineering: In the process of feature engineering, we adhere to the following 

steps: (a) If a specific column contains missing entries ≥ 10% of the total entries, we eliminate 

the entire feature column. (b) For the remaining feature columns, we replace them with the 

mean value of their respective column. (c) Any column with very low variance is removed. (d) 

Highly correlated features are removed from the independent feature set based on their linear 

and nonlinear correlations using Pearson and Spearman correlation matrices, with a threshold 

value set at ≥ 0.95 for both. (e) Finally, we eliminate feature columns that are redundant or 

irrelevant to the target feature using the Recursive Feature Elimination (RFE)10 method. RFE 

identifies the most relevant features by recursively removing those with the smallest weight, 

as determined by an Extra Trees classifier or regressor in a classification or regression task, 

respectively. (f) Finally, we standardized the features to ensure uniform scaling across all 

features, aligning with the typical prerequisite of many machine learning models for 

standardized feature sets. 

(iii) Selecting the best model: In this step, we perform two separate machine learning tasks: 

regression and classification. Before delving into the model selection, we first divided elements 



A and M of our 920 data points into four groups: alkaline metals, alkaline earth metals, 

transition metals, and non-metals. So, in the matrix representation of element A × element MT, 

we will have a (4×4) matrix with a total of 16 different combinations. We ensure that the data 

splitting into train and test is done equally from every 16 combinations in an 80/20 train/test 

splitting. This way, we can avoid randomly selected data points, which may leave some 

combinations predominantly for training, potentially resulting in poorer predictions for the test 

set. 

(iv) Feature importance: Finally, using the best machine learning model, we compute the 

Permutation Feature Importance, which assesses the contribution of each feature to the model's 

statistical performance on a given tabular dataset. This method is especially valuable for non-

linear or opaque estimators. It works by randomly shuffling the values of a single feature and 

then observing how much the model's performance decreases. We determine how much the 

model relies on such a feature by breaking the relationship between the feature and the target. 

Importance of trained ML models: 

The trained ML models reveal deep insights into the intricate relationships between structure, 

stability, and electronic properties of ternary selenides. These models revealed critical 

dependencies, such as the significant role of lattice parameters in predicting hull stability and 

the enhanced accuracy of ANN models in high-fidelity band gap prediction. Moreover, these 

trained models represent a critical step toward developing robust predictive frameworks 

capable of screening an expansive chemical space, including AMSe3 compositions with mixed 

cations or extended to other chalcogenides (e.g., S/Se). Achieving this goal will require 

comprehensive training datasets to adequately capture the vast chemical space, and we aim to 

refine and expand our current ML models in future studies. 



 

Figure S1: Composition map depicting 920 combinations of AMSe3 compounds. The majority 

of ternary selenides consist of transition metals (~56% elements from the periodic table), while 

others are post-transition metals (~13%), non-metals (~13%), alkali metals (~9%), and alkaline 

earth metals. We have considered common oxidation states of each element for constructing 

the AMSe3 dataset.   

 

 

 

 



Table S1: Energy per atom of a subset of 200 randomly chosen compounds optimized in four 

different structural phases. 

Energy per atom (eV) of compounds in different phases 

Compounds GdFeO3-

type 

NH4CdCl3-

type 

PbPS3-

type 

FePS3-

type 

Compounds GdFeO3-

type 

NH4CdCl3-

type 

PbPS3-

type 

FePS3-

type 

AgAsSe3 -0.700 -0.712 -0.717 -0.711 MnRuSe3 -1.208 -1.197 -1.146 -1.143 

AgNbSe3 -1.009 -1.018 -1.006 -1.015 MnZnSe3 -0.888 -0.913 -0.876 -0.884 

AlGaSe3 -0.789 -0.834 -0.814 -0.820 MoBaSe3 -1.083 -1.124 -1.123 -1.107 

AlIrSe3 -0.994 -1.012 -0.956 -0.964 NaVSe3 -0.953 -0.968 -0.968 -0.961 

AlSbSe3 -0.799 -0.843 -0.838 -0.811 NbAgSe3 -1.008 -1.025 -1.006 -1.020 

AlScSe3 -1.042 -1.051 -1.037 -1.029 NbKSe3 -1.045 -1.044 -1.050 -1.037 

AlYSe3 -1.065 -1.083 -1.066 -1.052 NiMoSe3 -1.113 -1.144 -1.144 -1.108 

AsAuSe3 -0.741 -0.752 -0.740 -0.726 NiSSe3 -0.767 -0.797 -0.819 -0.799 

AsBSe3 -0.842 -0.872 -0.868 -0.892 OsBaSe3 -1.060 -1.089 -1.088 -1.078 

AsCoSe3 -0.896 -0.898 -0.900 -0.876 OsCaSe3 -1.036 -1.083 -1.063 -1.059 

AsKSe3 -0.726 -0.713 -0.744 -0.736 OsGeSe3 -1.011 -1.066 -1.020 -1.061 

AsLiSe3 -0.748 -0.756 -0.760 -0.755 OsPtSe3 -1.093 -1.100 -1.097 -1.108 

AuAlSe3 -0.739 -0.754 -0.760 -0.768 PbBeSe3 -0.752 -0.776 -0.792 -0.758 

AuRhSe3 -0.854 -0.870 -0.818 -0.849 PbHgSe3 -0.616 -0.616 -0.622 -0.622 

BaHfSe3 -1.219 -1.208 -1.198 -1.187 PBiSe3 -0.818 -0.818 -0.827 -0.802 

BaOsSe3 -1.062 -1.058 -1.090 -1.057 PbMgSe3 -0.743 -0.727 -0.748 -0.749 

BaPdSe3 -0.877 -0.854 -0.873 -0.873 PbOsSe3 -1.020 -1.017 -1.027 -1.026 

BaPtSe3 -0.902 -0.887 -0.882 -0.901 PdCaSe3 -0.839 -0.885 -0.870 -0.857 

BAsSe3 -0.829 -0.876 -0.882 -0.876 PdHfSe3 -1.172 -1.167 -1.178 -1.169 

BaSSe3 -0.779 -0.798 -0.882 -0.876 PdMoSe3 -1.094 -1.120 -1.093 -1.087 

BaWSe3 -1.166 -1.146 -1.188 -1.166 PdOsSe3 -1.076 -1.079 -1.059 -1.076 

BeGeSe3 -0.813 -0.811 -0.809 -0.778 PdSiSe3 -0.860 -0.884 -0.883 -0.900 

BeHfSe3 -1.129 -1.167 -1.137 -1.103 PdWSe3 -1.158 -1.167 -1.165 -1.160 

BeMnSe3 -1.018 -1.031 -0.971 -0.959 PdZnSe3 -0.709 -0.729 -0.721 -0.744 

BeOsSe3 -1.066 -1.051 -1.018 -1.011 PGaSe3 -0.781 -0.800 -0.796 -0.782 

BePtSe3 -0.876 -0.895 -0.885 -0.841 PIrSe3 -0.989 -1.019 -0.986 -0.966 

BeReSe3 -1.097 -1.097 -1.093 -1.075 PKSe3 -0.767 -0.743 -0.770 -0.780 

BeSiSe3 -0.819 -0.863 -0.857 -0.829 PRbSe3 -0.764 -0.735 -0.757 -0.777 

BeTiSe3 -1.027 -1.058 -1.023 -1.001 PtBeSe3 -0.829 -0.888 -0.856 -0.888 

BeWSe3 -1.122 -1.165 -1.110 -1.108 PtCoSe3 -0.964 -0.983 -0.958 -0.993 

BeZrSe3 -1.074 -1.110 -1.091 -1.052 PtHgSe3 -0.656 -0.725 -0.684 -0.724 

BFeSe3 -1.017 -1.023 -0.992 -1.004 PtMgSe3 -0.789 -0.854 -0.843 -0.836 

BiBSe3 -0.818 -0.851 -0.877 -0.873 PtNiSe3 -0.914 -0.939 -0.918 -0.946 

BiCoSe3 -0.889 -0.884 -0.865 -0.862 PtReSe3 -1.149 -1.172 -1.158 -1.165 

BiGaSe3 -0.759 -0.791 -0.771 -0.781 RbAsSe3 -0.701 -0.699 -0.716 -0.723 

BiIrSe3 -0.962 -0.940 -0.929 -0.924 RbPSe3 -0.711 -0.735 -0.770 -0.757 

BiTlSe3 -0.700 -0.721 -0.705 -0.715 RbSbSe3 -0.698 -0.704 -0.725 -0.719 

BiYSe3 -1.046 -1.052 -1.022 -1.019 RbTaSe3 -1.085 -1.107 -1.101 -1.092 

CaGeSe3 -0.827 -0.862 -0.845 -0.839 ReBeSe3 -1.062 -1.129 -1.062 -1.122 

CaMoSe3 -1.103 -1.101 -1.089 -1.086 ReCdSe3 -0.950 -1.004 -0.977 -0.989 

CaRuSe3 -1.018 -1.031 -1.000 -0.990 ReCuSe3 -1.068 -1.097 -1.070 -1.090 

CaSnSe3 -0.837 -0.838 -0.838 -0.841 ReZnSe3 -0.969 -1.011 -0.968 -0.997 

CaTcSe3 -1.067 -1.068 -1.071 -1.066 RhAuSe3 -0.848 -0.877 -0.857 -0.879 

CaTiSe3 -1.090 -1.089 -1.067 -1.065 RhCoSe3 -1.033 -1.044 -1.055 -1.045 

CdGeSe3 -0.666 -0.675 -0.705 -0.681 RhCrSe3 -1.134 -1.168 -1.152 -1.152 

CdPdSe3 -0.702 -0.718 -0.721 -0.706 RhGaSe3 -0.871 -0.938 -0.889 -0.929 

CdReSe3 -0.965 -0.997 -0.978 -0.984 RhRuSe3 -1.120 -1.128 -1.120 -1.117 



CdTeSe3 -0.597 -0.613 -0.610 -0.584 RhSbSe3 -0.883 -0.950 -0.904 -0.937 

CoGaSe3 -0.851 -0.903 -0.880 -0.899 RhTlSe3 -0.819 -0.868 -0.821 -0.869 

CoPbSe3 -0.887 -0.910 -0.894 -0.901 RuCrSe3 -1.195 -1.217 -1.214 -1.206 

CoReSe3 -1.197 -1.209 -1.189 -1.200 RuIrSe3 -1.148 -1.171 -1.137 -1.142 

CoScSe3 -1.085 -1.131 -1.090 -1.085 RuMnSe3 -1.180 -1.202 -1.169 -1.182 

CoSnSe3 -0.891 -0.919 -0.898 -0.920 RuPSe3 -0.974 -1.023 -0.996 -1.037 

CrBSe3 -1.031 -1.120 -1.063 -1.103 RuRhSe3 -1.113 -1.121 -1.099 -1.104 

CrCoSe3 -1.136 -1.155 -1.108 -1.089 RuYSe3 -1.179 -1.238 -1.215 -1.210 

CrRhSe3 -1.159 -1.169 -1.126 -1.092 SbAsSe3 -0.786 -0.807 -0.798 -0.785 

CsTaSe3 -1.082 -1.094 -1.101 -1.106 SbRbSe3 -0.719 -0.706 -0.731 -0.719 

CuGeSe3 -0.751 -0.776 -0.783 -0.773 SbScSe3 -1.019 -1.028 -1.009 -0.997 

CuHfSe3 -1.107 -1.130 -1.110 -1.104 ScPSe3 -1.025 -1.050 -1.033 -1.048 

CuPbSe3 -0.759 -0.764 -0.761 -0.764 ScSbSe3 -0.999 -1.033 -1.001 -0.998 

CuSSe3 -0.691 -0.718 -0.744 -0.722 SiBeSe3 -0.836 -0.853 -0.867 -0.858 

CuTcSe3 -1.022 -1.034 -1.001 -1.003 SiNiSe3 -0.885 -0.920 -0.907 -0.892 

CuZrSe3 -1.052 -1.073 -1.061 -1.053 SnFeSe3 -0.955 -0.962 -0.945 -0.953 

FeBSe3 -0.954 -1.047 -1.014 -1.053 SnSrSe3 -0.816 -0.849 -0.817 -0.817 

FeCoSe3 -1.058 -1.081 -1.057 -1.064 SrSiSe3 -0.870 -0.910 -0.902 -0.884 

GaBiSe3 -0.751 -0.783 -0.784 -0.750 SrTiSe3 -1.084 -1.066 -1.079 -1.061 

GaInSe3 -0.727 -0.757 -0.758 -0.737 TaCsSe3 -1.120 -1.112 -1.126 -1.106 

GaIrSe3 -0.939 -0.966 -0.907 -0.906 TaHgSe3 -1.506 -0.997 -0.996 -0.995 

GaSbSe3 -0.746 -0.785 -0.781 -0.743 TaKSe3 -1.121 -1.121 -1.125 -1.112 

GeCaSe3 -0.829 -0.846 -0.838 -0.812 TaTlSe3 -1.079 -1.115 -1.112 -1.103 

GeCdSe3 -0.679 -0.674 -0.682 -0.685 TcCuSe3 -1.010 -1.031 -1.011 -1.025 

GeCuSe3 -0.773 -0.778 -0.789 -0.776 TcGeSe3 -1.014 -1.069 -1.021 -1.045 

GeHfSe3 -1.152 -1.168 -1.151 -1.126 TcMnSe3 -1.222 -1.267 -1.208 -1.236 

GeMgSe3 -0.752 -0.752 -0.759 -0.752 TcPtSe3 -1.090 -1.107 -1.090 -1.090 

GeMoSe3 -1.066 -1.105 -1.055 -1.068 TeBaSe3 -0.775 -0.794 -0.771 -0.758 

GeTiSe3 -1.044 -1.058 -1.032 -1.030 TeCdSe3 -0.611 -0.614 -0.611 -0.617 

GeZnSe3 -0.694 -0.693 -0.696 -0.704 TeMgSe3 -0.692 -0.691 -0.680 -0.686 

HfCaSe3 -1.197 -1.204 -1.193 -1.188 TiCaSe3 -1.090 -1.091 -1.082 -1.069 

HfGeSe3 -1.135 -1.180 -1.143 -1.150 TiCuSe3 -1.011 -1.024 -1.015 -1.012 

HfSrSe3 -1.192 -1.205 -1.197 -1.181 TiGeSe3 -1.048 -1.068 -1.050 -1.050 

HgPtSe3 -0.681 -0.719 -0.694 -0.675 TiHgSe3 -0.859 -0.856 -0.878 -0.878 

HgReSe3 -0.907 -0.933 -0.926 -0.928 TiPdSe3 -1.068 -1.098 -1.068 -1.049 

HgSnSe3 -0.614 -0.631 -0.632 -0.599 TlAlSe3 -0.734 -0.755 -0.775 -0.750 

InAuSe3 -0.686 -0.691 -0.697 -0.680 TlAuSe3 -0.637 -0.649 -0.666 -0.644 

InGaSe3 -0.719 -0.755 -0.749 -0.749 TlCrSe3 -0.944 -0.955 -0.930 -0.927 

InPSe3 -0.757 -0.786 -0.783 -0.787 TlIrSe3 -0.883 -0.910 -0.865 -0.858 

InRuSe3 -0.948 -0.950 -0.926 -0.937 TlScSe3 -0.930 -0.932 -0.930 -0.932 

IrCdSe3 -0.812 -0.869 -0.834 -0.875 VCsSe3 -0.963 -0.964 -0.987 -0.965 

IrHgSe3 -0.767 -0.823 -0.792 -0.827 VNaSe3 -0.959 -0.973 -0.975 -0.965 

IrRhSe3 -1.087 -1.110 -1.066 -1.114 WNiSe3 -1.172 -1.210 -1.176 -1.207 

IrRuSe3 -1.148 -1.167 -1.158 -1.156 WPdSe3 -1.151 -1.197 -1.156 -1.174 

IrYSe3 -1.154 -1.237 -1.195 -1.178 YBiSe3 -1.038 -1.055 -1.043 -1.013 

IrZnSe3 -0.836 -0.870 -0.842 -0.898 YIrSe3 -1.220 -1.188 -1.200 -1.168 

KNbSe3 -1.020 -1.041 -1.038 -1.022 YPSe3 -1.058 -1.065 -1.065 -1.062 

KVSe3 -0.944 -0.970 -0.978 -0.969 YRhSe3 -1.182 -1.185 -1.163 -1.123 

LiAsSe3 -0.743 -0.757 -0.742 -0.734 YTlSe3 -0.954 -0.969 -0.948 -0.965 

LiSbSe3 -0.741 -0.748 -0.746 -0.719 ZnMnSe3 -0.911 -0.923 -0.878 -0.870 

MgHfSe3 -1.110 -1.117 -1.124 -1.086 ZnOsSe3 -0.950 -0.944 -0.918 -0.923 

MgPbSe3 -0.742 -0.750 -0.745 -0.723 ZrCdSe3 -0.969 -0.978 -0.962 -0.990 

MgTiSe3 -1.000 -0.995 -0.979 -0.988 ZrPtSe3 -1.157 -1.173 -1.135 -1.126 

 



Section S2: Structural parameters of AMSe3 compounds: 

S2.1 Previous studies involving the NH4CdCl3-like Orthorhombic Pnma phase 

Previous studies have demonstrated the stability of the NH4CdCl3-like Orthorhombic Pnma 

phase as the most stable among the competing phases. Ong et al. performed an extensive ab 

initio study to assess the phase stability of BaZrSe₃, revealing the preference for NH₄CdCl₃-

like orthorhombic phase over other competing phases.11 Tranchitella et al. reported the 

experimental synthesis of a series of Sr1−xBaxZrSe3 compounds in the NH4CdCl3-like 

orthorhombic phase.12 SrHfSe3 was successfully synthesized by Moroz et al. in NH4CdCl3-like 

Orthorhombic Pnma structure.13 Various studies have demonstrated that the synthesis of 

NH₄CdCl₃-like orthorhombic phases can be achieved at reduced temperatures. 

S2.2 Lattice parameters of AMSe3 in NH₄CdCl₃-like phase  

The lattice parameters of our 920 ternaries exhibit a non-uniform distribution (as shown in 

Figure S3). The lattice constant ‘c’ spans widely across a range of 13.08 Å with a mean ± 

average absolute deviation of 14.32 ± 1.54 Å. Following this, the lattice constant ‘b’ displays 

a distribution range of 8.31 Å with a mean ± average absolute deviation of 9.41 ± 0.78 Å. 

Conversely, the lattice constant ‘a’ exhibits a narrower distribution, spanning 2.51 Å with a 

mean ± average absolute deviation of 3.89 ± 0.22 Å. This non-uniformity comes from the 

different orientations of octahedra in various directions. Along the lattice constant ‘a’, 

octahedra are densely packed, sharing edges without intervening space. However, along the 

lattice constants ‘b’ and ‘c’, only two octahedra are connected, leaving a gap to the next replica 

of these connected octahedra by an average value of 9.41 Å and 14.32 Å, respectively (shown 

in Figure S3).  



 

Figure S2: Schematics depicting anisotropy of lattice parameters of AMSe3. 

 

Figure S3: Distribution of lattice parameters a, b, and c for entire AMSe3 dataset. The lattice 

parameter a has much narrower distribution than other two lattice parameters.  

Section S3: Thermodynamic stability: 



 

Figure S4: Distribution of (a) formation energy and (b) energy above hull values for all 920 

candidates, (c) Percentage of AMSe3 within certain range of hull and formation energies, (d) 

Scatter plot between Eh and Ef exhibiting no clear correlation between these two stability 

parameters.  

S3.1 Formation Energy and Hull Stability: In materials science, the thermodynamic stability 

of a material is gauged by its hull distance (Eh), which represents the energy of decomposition. 

This energy (Eh) is the material's formation energy (Ef) relative to all other compounds within 

a defined chemical space. While Ef indicates the degree to which a compound can form from 

its constituent elements, the hull distance (Eh) dictates phase stability that arises from the 

competition among the formation energies (Ef) of all compounds within the given chemical 

space. 



The formation energy of the materials in our dataset is predominantly less than 0 eV per atom, 

with 93.26% of the materials being formable (Ef ≤ 0 eV per atom), as shown in Figures S4a d, 

representing the histogram and bar plot, respectively. While Ef typically ranges on the order of 

several eV, the Eh values are generally 1-2 orders of magnitude smaller. Additionally, the 

energies associated with hull distance exhibit highly nonlinear behaviour around zero (Figure 

S6c). Whereas Ef shows a relatively uniform distribution across a broad range of energies, with 

a mean ± average absolute deviation of -0.45 ± 0.31 eV per atom (Figure S4a), Eh covers a 

much narrower energy range, with a mean ± average absolute deviation of 0.18 ± 0.09 eV/atom 

(Figure S4b). We also performed the same tripartite division for the subset with Ef > 0 eV per 

atom. However, the proportion of stable and metastable candidates in this subset is 

insignificant, at 0.11% and 1.85%, respectively, while the unstable candidates constitute 4.79% 

(refer to Figure S4c). 

Table S2: AMSe3 candidates with Eh = 0 eV/atom along with their formation energy per atom 

in NH4CdCl3-type phase. 

Compound 

  

Formation energy 

in NH4CdCl3-type phase 

(eV/atom)  

Formation energy 

for AMSe3 as included in 

OQMD* (eV/atom) 

RbNbSe
3
 -0.870  

CsNbSe
3
 -0.888 -0.832 (id:1482812) 

CaTcSe
3
 -0.870  

SrMnSe
3
 -1.038  

SrTeSe
3
 -0.826 -0.789 (id: 1347292) 

BaHfSe
3
 -1.643  

BaMnSe
3
 -1.034  

BaTeSe
3
 -0.863  

BaZrSe
3
 -1.639  

LaYSe
3
 -1.965  

CrAsSe
3
 -0.325 -0.318 (id: 1733621) 

MnHgSe
3
 -0.280  

NiMnSe
3
 -0.348  



CuTcSe
3
 -0.171  

HgMnSe
3
 -0.281  

GaRhSe
3
 -0.515  

GeMnSe
3
 -0.375  

AsAlSe
3
 -0.477  

SbAlSe
3
 -0.544  

SbInSe
3
 -0.388  

BiAlSe
3
 -0.613  

BiAsSe
3
 -0.258  

BiCrSe
3
 -0.465  

BiInSe
3
 -0.469  

BiRhSe
3
 -0.417  

*In bracket, we provide the compound ID from OQMD database.  

We find that none of these compounds are documented in NH4CdCl3-type phase within 

established materials databases, such as the Materials Project and the Open Quantum Materials 

Database (OQMD). The phases for some of these compounds that are included in OQMD, are 

unstable compared to NH4CdCl3-type phase as shown in the 3rd column of Table S2. For the 

comparison of formation energy values with the OQMD entries, we have calculated them using 

our own parameters and have taken structure from the OQMD. 

 



 

Figure S5: Percentage distribution of hull stable/metastable AMSe3 compounds in each 

chemically distinct region. 

S3.2 Experimental realization of Metastable phases of materials: Several evidence suggest 

that materials with a convex hull distance near zero are prime candidates for successful 

synthesis under experimental conditions. Metastable phases, typically challenging to 

synthesize, have been experimentally validated in several cases.14 By broadening the 

convergence region of the convex hull to 0.1 eV/atom, metastable candidates are found to be 

distributed across a wide compositional range. This expanded approach aligns with the 

methodologies adopted in other high-throughput studies, which have similarly employed 

critical tolerance values for the convex hull.15–17 The experimental methods can be fine-tuned 

to stabilize these promising AMSe3 systems for optoelectronic applications. 



Advanced experimental synthesis techniques enable the discovery of functional selenide 

materials beyond traditional equilibrium phases and compositions. High-temperature synthesis 

methods, such as those utilizing resistive-bearing furnaces18–20 or superfast heating 

techniques21, have become invaluable in this pursuit. These methods have been extensively 

applied to the synthesis of metastable nanomaterials, including single-atom alloys22, high-

entropy alloys,23 and oxides.24 The efficacy of high-temperature synthesis platforms lies in their 

ability to control key reaction parameters precisely. By adjusting reaction time, temperature, 

the choice of reactants, and atmospheric conditions, researchers can effectively navigate the 

synthesis of metastable compositions. This control helps to prevent undesirable phenomena 

such as phase separation, coarsening, and ripening, which can compromise the stability and 

purity of the synthesized materials. The implications of these advancements are profound. With 

the capability to stabilize metastable phases, a broader range of functional materials can be 

accessed, offering new opportunities for technological applications.  

Advanced experimental synthesis techniques enable the discovery of functional selenide 

materials beyond traditional equilibrium phases and compositions. High-temperature synthesis 

methods, such as those utilizing resistive-bearing furnaces18–20 or superfast heating 

techniques21, have become invaluable in this pursuit. These methods have been extensively 

applied to the synthesis of metastable nanomaterials, including single-atom alloys22, high-

entropy alloys,23 and oxides.24 The efficacy of high-temperature synthesis platforms lies in their 

ability to control key reaction parameters precisely. By adjusting reaction time, temperature, 

the choice of reactants, and atmospheric conditions, researchers can effectively navigate the 

synthesis of metastable compositions. This control helps to prevent undesirable phenomena 

such as phase separation, coarsening, and ripening, which can compromise the stability and 

purity of the synthesized materials. The implications of these advancements are profound. With 



the capability to stabilize metastable phases, a broader range of functional materials can be 

accessed, offering new opportunities for technological applications.  

 

Figure S6: Scatter plot between (a) μ(octahedral factor) and t*(modified tolerance factor) and 

(b) μ(octahedral factor) and 𝜏 (Goldschmidt tolerance factor). These plots illustrate that 

traditional geometry parameters are not suitable for classifying stability/instability region of 

AMSe3.   

Section S4: Machine Learning models involving thermodynamic stability: 
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Figure S7:  Prediction of Ef using (a) Hist gradient boosting regressor and (b) XGBoost 

regressor models. These models use elemental and compositional features for training and 

testing.  

S4.1 Hull stability regression: Predicting the exact numerical values of the hull distances for 

AMSe₃ materials using only elemental and compositional features is challenging, as phase 

stability is not an intrinsic property of the materials. The best regressor model with elemental 

features, the gradient boosting regressor, achieves a test MAE of 0.05 eV/atom. However, when 

we include lattice parameters as features, the hist gradient boosting regressor model 

outperformed the others, reducing the test MAE to 0.04 eV/atom—a 20% improvement in 

accuracy.  

Given the high prediction accuracy for the formation energy of the materials, we included the 

formation energy values as a feature to predict hull distances. Although Figure S4d shows no 

direct relationship between formation energy and hull distance, the BayesianRidge model 

successfully predicts hull distances with a test MAE of approximately 0.04 eV/atom, even 

without incorporating lattice parameters as features, as shown in Figure S8(a). The inclusion 

of lattice parameters here in feature list, however, does not improve the model accuracy any 

further (Figure S8b). 



 

Figure S8: Prediction of Eh with hist gradient boost regressor model considering (i) Ef and 

elemental features (no lattice parameters included) and (ii) Ef, elemental features, and lattice 

parameters as features. 

S4.2 Feature importance for thermodynamic stability: 

We briefly discuss the significance of various features of the target properties. This analysis 

elucidates the contribution of each feature to the target. When the direct mathematical 

relationship between the target and features is unknown, the ML model identifies the 

importance of specific features. This insight facilitates the connection of these features to the 

target property, thereby enhancing our understanding of the material's physical characteristics 

and are extremely valuable for strategically designing stable functional materials that are yet 

to be realized experimentally. 

Section S5: Electronic Properties 

S5.1 Machine Learning models involving Bandgap prediction: 

Bandgap regression: First, we utilize only elemental and compositional features to predict the 

numerical values of the HSE06 bandgap for ternary selenides. Training the model with this 



information for bandgap prediction is challenging, as the R² value for the best model is 

approximately 70%. However, the Mean Absolute Error (MAE) is relatively low, around 0.24 

eV. Various models, including hist gradient boosting regressor, LGBMRegressor, 

XGBRegressor, RandomForestRegressor, and ExtraTreesRegressor, perform similarly, with 

MAE values ranging between 0.24 and 0.26 eV. 

Incorporating lattice parameters as structural features does not lead to a significant 

improvement in prediction accuracy. The LGBMRegressor model, for instance, achieves an 

MAE of 0.23 eV. Additionally, the feature importance of lattice constants is considerably lower 

than that of elemental features such as max_ion_ener and max_phi. 

 

Figure S9: Bandgap prediction by using (a) elemental features only, (b) elemental and lattice 

parameters as features. 

Examining the correlation between GGA-PBE and HSE06-level bandgap values, there is no 

significant correlation in the narrower bandgap region (PBE Band Gap ≤ 0.2 eV and HSE06 

Band Gap ≤ 0.8 eV, as shown in Figure S11b). However, in the wider bandgap regions, a linear 



relationship emerges. By including GGA-PBE bandgap values as a feature, the ANN model 

demonstrates improved accuracy, achieving an MAE of 0.16 eV. 

 

Figure S10: (a) HSE06 bandgap vs energy above hull (Eh) and (b) HSE06 bandgap and 

formation energy (Ef). Both Eh and Ef exhibit a negative correlation with the HSE06 bandgap. 

 

Figure S11: (a) Feature importance of ANN model when PBE bandgap is included as a feature 

and (b) Scatter plot between GGA-PBE and HSE06 band gaps displaying correlation. 



 

Figure S12: A/M composition map of 137 stable (Eh<0.1 eV/atom and Ef ≤ 0 eV/atom) 

candidates having HSE06 bandgap > 0.5 eV. 



 

Figure S13: pDOS of a few representative AMSe3 candidates.  

 

Figure S14: Projected density of state plots for BMSe3 systems (M= Co, Ir, Rh). 



 

Figure S15: Density of States plot for (a) different A cations in AMSe3 having M=Zr, Hf. (b) 

Compounds having non-metal cation as ‘M’. (c) Compounds having rare earth elements at both 

‘A’ and ‘M’ sites. 



S5.2 Chemical Trends in Compounds with suitable direct bandgap 

The screened compounds frequently contain A-site elements that include a variety of p-block 

(such as As, Bi, and Sb) and s-block elements (like Li, Na, and Ca), suggesting that both heavier 

post-transition metals and lighter alkali and alkaline earth metals can stabilize NH4CdCl3-phase 

structures with desirable electronic properties. The relatively heavy alkaline earth metals like 

Sr and Ba also occupy A-sites in these AMSe3 compounds. However, most of these A-site 

elements do not contribute to the band edge states, remaining largely inert to the electronic 

properties of the corresponding AMSe3.  

The M-site elements of AMSe3 display a similarly broad chemical space involving transition 

metals (such as Co, Rh, and Ir) and main group elements (like Al, Ga, and Ge) (Figure 4). 

Notably, several screened compounds include M-site elements like Zr, Hf, and Ti, which are 

commonly reported to form stable ternary sulfides and selenides in different phases. As M-sites 

form MSe6 octahedra, large variation in elemental space suggests an inherently flexible 

coordination environment in these ternary compounds. Furthermore, the M-site elements 

significantly tune the overall electronic properties as those dominantly compose the CBM state 

of AMSe3. 

We also note that the presence of heavy metals (such as Ir and Bi) and lighter elements 

(such as Al and Li) in the same structure points to a potential for tunable electronic and optical 

properties driven by the intrinsic properties of these elements. The large mass difference in the 

constituent elements indicates a possible modification in the phonon spectrum and vibronic 

couplings, eventually boosting the excited state charge carrier dynamics in these photoactive 

materials. 

 



Table S3: Comparison of band gaps of a few screened AMSe3 with their values as reported in various 

previous work. 

Compound HSE06 Bandgap (this study) Previous study 

1. SrHfSe3 1.0 eV 1.0 eV (expt.)25 

2. CaZrSe3 1.11 eV 1.0 eV (theor.)26 

3. BaZrSe3 0.99 eV 1 eV (theor.)26 

4. SrZrSe3 0.84 eV 0.86 eV(theor.)26 

5. CaHfSe3 1.18 eV 1.10 eV(theor.)26 

 

Table S4: List of screened candidates having direct HSE06 Bandgap > 0.5 eV along with their 

hole and electron effective masses. Green- Candidates having ultralow effective charge carrier 

masses. Red- Candidates failing the effective mass screening criteria. 

Compound HSE06 Bandgap(eV) me* mh* Selected? 

AlCoSe3 1.62 1.184 -4.309   

AlPSe3 1.41 0.364 -0.514   

AsAlSe3 1.72 0.601 -0.966   

AsRhSe3 0.61 0.501 -0.535   

AsYSe3 1 0.364 -0.483   

BaTiSe3 0.56 0.41 -0.472   

BaZrSe3 0.99 0.482 -0.587   

BCoSe3 1.34 0.474 -1.035   

BiAsSe3 1.32 0.525 -1.325   

BIrSe3 1.03 0.672 -0.78   

BiSbSe3 0.79 0.205 -0.468   

BiScSe3 1.36 0.346 -0.611   

BRhSe3 1.54 0.461 -0.802   

CaHfSe3 1.18 0.877 -0.826   

CaZrSe3 1.11 0.479 -0.306   

CdSnSe3 1.12 0.331 -1.891   



CrInSe3 1.02 0.819 -1.547   

GaAlSe3 2 1.376 -1.402   

GaIrSe3 1.41 0.205 -0.696   

GeHfSe3 1.04 1.357 -1.815   

GeZrSe3 0.85 0.406 -0.525   

HgHfSe3 2.02 0.993 -1.316   

InRhSe3 0.65 0.181 -0.535   

InSbSe3 1.34 0.217 -0.387   

IrLaSe3 1.2 1.02 -1.523   

LaIrSe3 1.08 0.58 -3.001   

LaScSe3 0.82 0.531 -0.656   

LiNbSe3 0.66 1.41 -2.078   

MgTeSe3 1.12 0.346 -0.291   

MnMgSe3 1.07 0.741 -0.432   

NaNbSe3 0.63 1.432 -0.967   

NaTaSe3 0.76 0.978 -0.994   

NbLiSe3 0.97 1.412 -3.327   

NbNaSe3 1.1 1.458 -0.713   

PAlSe3 1.27 1.022 -0.678   

PbTiSe3 1.02 7.69 -0.503   

PScSe3 0.89 7.16 -1.359   

RhAsSe3 0.97 0.637 -0.642   

RhLaSe3 0.79 0.852 -0.39   

RhYSe3 0.82 1.283 -0.879   

ScGaSe3 2.54 0.548 -1.397   

ScYSe3 1.43 0.569 -0.639   

SrHfSe3 1 0.401 -0.536   

SrZrSe3 0.84 0.968 -0.558   

TlTaSe3 0.51 1.601 -1.659   

YLaSe3 1.25 0.364 -0.483   

YRhSe3 0.56 0.476 -0.641   

YSbSe3 1.72 0.363 -0.485   

YScSe3 0.96 0.679 -0.63   

ZrGeSe3 0.88 10.904 -0.511   

 



 

Optoelectronic performance: 

 

Figure S16: Absorption spectra of a few candidates with high SLME values. The sharp 

increase in adsorption coefficient at the band edge indicates high power conversion efficiency 

of these absorber materials. 

 

 

 

 

 

 

 



 

Phase stability of screened materials 

Table S5: Phase stability investigation of compounds having ultralow carrier effective masses. 

Orthorhombic Pna21 structure with corner-shared octahedra emerges as the most common 

competing phase for NH4CdCl3-like Orthorhombic Pnma compounds. The green coloured 

phase is the most stable one.  

Compound Total Energy of compound (in eV) 
 

Monoclinic 

P1c1 

NH4CdCl3-

Orthorhombic 

Pnma 

Monoclinic 

C12m 

Orthorhombic 

Pna21 

BaZrSe3 -113.06 -116.54 -111.57 -116.52 

BiScSe3 -99.69 -102.26 -99.9 -102.25 

BRhSe3 -99.57 -98.7 -99.74 -98.7 

CaHfSe3 -116.73 -120.37 -116.76 -120.37 

CaZrSe3 -111.55 -115.93 -111.54 -114.94 

GaIrSe3 -89.7 -93.43 -90.16 -95.65 

GeHfSe3 -113.29 -115.22 -112.26 -115.21 

GeZrSe3 -107.8 -109.92 -107.5 -109.22 

InRhSe3 -83.88 -88.03 -84.24 -89.01 

MgTeSe3 -69.14 -67.4 -67.5 -69.48 

NaTaSe3 -109.05 -109.53 -108.56 -109.4 

ScYSe3 -58.2 -125.95 -124.96 -125.92 

SrHfSe3 -116.37 -120.14 -115.2 -120.14 

SrZrSe3 -113.89 -114.75 -111.11 -114.75 

YScSe3 -125.72 -128.44 -125.29 -128.44 

InSbSe3 -65.9 -79.42 -66.6 -76.1 

AlPSe3 -80.38 -82.38 -84.33 -85.88 

 

 



 

Defect tolerance: 

 



 



 



 

Figure S17: pDOS plots displaying the effect of (a) A cation vacancy, (b) M cation vacancy and (c) 

Se vacancy on screened AMSe3’s. 

(f) Thin-film Photovolatics: 

 

Figure S18: Thickness-dependent SLME of screened candidates. 



 

Figure S19: Phonon dispersions of screened candidates depicting the dynamical stability of 

these compounds due to the absence of any negative frequencies. 



Figure S20: Temperature evolution over time during AIMD. These simulations are 

performed at 300 K.  

 

Figure S21: Structures of (a) BaZrSe3, (b) ScYSe3, and (c) SrHfSe3 over time during AIMD. 

Further reinforcing these findings, we tracked the temperature evolution over time, as depicted 

in Figure S18. The temperature profiles for BaZrSe₃, ScYSe₃, and SrHfSe₃ exhibit minimal 

fluctuations, which, in conjunction with the constrained energy oscillations, corroborate the 



high thermal stability of these compounds. The convergence of both energy and temperature 

data provides compelling evidence that the AMSe₃ selenides can effectively maintain their 

structural integrity and stability under ambient conditions.  

Section S8. Non Adiabatic Molecular Dynamics: 

The carrier lifetimes of these materials are similar to that of inorganic halide perovskites and 

similar optoelectronic materials. Li et al. reported a non-radiative carrier lifetime of 1.45 ns for 

CsPbBr3, which is one of the well-explored all-inorganic perovskite material and is known for 

its exceptional optoelectronic properties but is not suitable for practical use due to its lead 

toxicity.27 Moreover, Zhao et al. reported a non-radiative carrier lifetime of 2.1 ns for CsPbI3, 

which is comparable to our representative materials. 

As observed from the time-averaged bandgap shown in Fig. 7(d), the bandgap value increases 

from  0.98 to 1.42 eV. This trend is in line with the inverse dependence of carrier lifetime on 

the bandgap values as described by Fermi’s golden rule. Furthermore, the rate at which non-

radiative recombination occurs is directly proportional to the square of the non-adiabatic 

coupling (NAC) strength. This strength indicates the probability of non-adiabatic transitions. 

The time-averaged NAC values indicated in Fig. 7d indicate the presence of faster 

recombination in the case of BaZrSe3 and SrHfSe3 than that of ScYSe3. Primarily, these NAC 

values seem to have a relation with the bandgap values, which indicates that a smaller bandgap 

gives rise to stronger NAC coupling. The suitable band gap and decoupled electron-phonon 

dynamics in these ternary selenides result in a promisingly long carrier lifetime. We emphasize 

that all three materials have a relatively high non-radiative carrier lifetime, which is particularly 

important for potential optoelectronic applications. 



 

Figure S22: Partial DOS plots of final screened candidates. 

Section S8: Descriptions of elemental features: 

Features' Name (Abbreviation) Description 

min_mendeleev_number Minimum mendeleev number* 

min_electronegativity Minimum electronegativity* 

avg_electronegativity Average electronegativity* 



min_phi Minimum work function* 

max_ion_ener Maximum ionization energy* 

avg_ion_ener Average ionization energy* 

min_first_ionization_energy Minimum first ionization energy* 

Latt_b Lattice parameter b 

max_heat_fusion Maximum heat fusion* 

A_n_ws^third Electron density at surface of Wigner-Sietz cell of A 

Latt_c Lattice parameter c 

Latt_a Lattice parameter a 

A_Se_bond_distance The bond distance between A and Se in the ASe bulk system 

avg_LUMO Average LUMO* 

A_phi Workfunction of A 

min_electron_affinity Minimum electron affinity* 

max_MeltingT Maximum melting temperature* 

max_phi Maximum work function* 

E_hull Energy above hull 

E_form Formation energy 

avg_ZungerPP_r-pi Average Zunger pseudopotential radius* 



min_MV Minimum molar volume* 

avg_space_group_number Average space group number* 

moDiff_ion_ener Modulus of the difference of the ionization energy * 

max_n_ws^third Maximum electron density at the surface of Wigner-Sietz 

cell* 

Note: The ‘*’ sign refers here to the value of all properties chosen between A and M. 
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