Supporting Information for

High-throughput and Data-Driven Search for Stable

Optoelectronic AMSe3 Materials

Nikhil Singh,^{1, #} Kushal Samanta,^{2, #} Suneet K. Maharana,³ Koushik Pal⁴, Sergei Tretiak⁵,

Anjana Talapatra⁶, Dibyajyoti Ghosh^{1,2}

¹Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
 ²Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
 ³Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
 ⁴Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
 ⁵Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
 ⁶Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA

#: These authors contributed equally

Section S1: Computational Methods:

(a)DFT details:

(i) The convex hull distance: This quantity denotes the stability upon decomposition into any binary and ternary competing phases, according to the chemical reaction: $E_{hull} = E_f$ (predicted phase) – E_f (competing phases). E_{hull} is calculated using the PYMATGEN¹ library, which aggregates the PBE energies of the competing phases available on the Materials Project.²

(ii) Formation energy: The formula used to calculate the formation energy of AMSe₃ is as follows: $E_{form/atom} = 1/5[E(AMSe_3) - 1 \times E(A) - 1 \times E(M) - 3 \times E(Se)]$. Where $E(AMSe_3)$ is the total energy of the AMSe₃ compound and E(A), E(M), and E(Se) are the chemical potentials of A, M, and Se in their respective bulk states calculated using GGA-PBE. This quantity determines the stability of the AMSe₃ compound with respect to decomposition to elemental states of A, M, and Se.

The reported formation energies and energy-above-hull values are based on data obtained from the Materials Project, which employs the Perdew-Burke-Ernzerhof (PBE) exchangecorrelation functional within the generalized gradient approximation (GGA). It should be noted that the energy data for many competing phases of metal selenides are unavailable in this database. Consequently, computing formation energies and hull stabilities at the HSE06 level is not feasible due to the significant computational cost involved.

(iii) Effective Mass calculation: Effective mass calculations were conducted using PBE functional to analyze the electronic properties of the material. It is important to mention that although traditional GGA-PBE calculations tend to underestimate band gaps, its overall shape of electronic band structures at the GGA level is rather accurate and closely mimics the experimental results.³

For photovoltaic devices, high mobility of photogenerated charge carriers is essential for facilitating transport and efficient collection by electrodes. Carrier mobility is predominantly influenced by the carrier effective mass, which is calculated from the second derivatives of band structure curves near the valence band maximum (VBM, for holes) and conduction band minimum (CBM, for electrons), respectively. At the VBM and CBM in ternary selenides semiconductors, the band structure E(k) can be locally approximated as follows:

$$E(k) = E_0 + \frac{\hbar^2 k^2}{2m^*}$$

where E(k) is the energy of an electron at the wavevector k in the band, E_0 is constant, describing the edge of band energy. Thus, the effective mass (m^*) can be calculated:

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_i \partial k_j}$$

We calculate the direction-dependent effective mass of carriers in the Brillouin zone of periodic lattice from one high symmetry point to another high symmetry point.

(iv) SLME determination: We calculated the selection metric for solar cell absorber, spectroscopic limited maximum efficiency (SLME) formulated by Yu and Zunger.⁴ The SLME is the theoretical ratio of the maximum output power density and the total incident solar energy density. Established by the Shockley-Queisser (SQ) limit, the SLME method overcomes the limitations of conventional S-Q efficiency evaluations, primarily based on band gap values. The S-Q efficiency often fails to consider dipole-forbidden direct transitions in certain direct-gap materials. The SLME incorporates both the absorption coefficient and the material thickness, accounting for radiative and non-radiative recombination losses, and considers both direct and indirect band gaps. Based on Fermi's golden rule, this approach provides a more comprehensive and accurate evaluation of the photovoltaic performance potential compared to the SQ limit. These crucial parameters are derived through meticulous computation employing the hybrid HSE06 exchange and correlation functional approximation.

(v) Phase stability:

For phase stability assessment of 200 selected compounds: Initial exploration of phase stability was conducted where each element is represented at least once as A or M to ensure that all elements are considered. This results in the inclusivity of the whole chemical space relevant to our research. We utilize the crystal structure of the prototypes (mentioned in phase selection using prototypes) as templates. We substitute atomic sites with A's and M's from our

previously identified 200 ternary compounds to optimize structures, determining total energies for all compounds across different structures.

For phase stability assessment of screened compounds: To assess the phase stability, we computed the total energies of four different crystallographic phases using Density Functional Theory (DFT). A dense Monkhorst-Pack k-point grid was used for Brillouin zone sampling. Convergence criteria included electronic self-consistency to 10^{-6} eV and ionic relaxation until forces were below 0.01 eV/Å. After full structural optimization, the total energy per formula unit for each phase was calculated. The phase with the lowest energy was identified as the most stable configuration, providing insight into the thermodynamic preferences under equilibrium conditions.

(vi) Defect Calculation: Materials with deep-level states within the band gap are sensitive to point defects, whereas materials that harbour defect states inside the valence or conduction band or are situated in proximity (within $\approx k_BT$) to the band edges are deemed defect-tolerant. As defect property evaluation is a step in an elaborate material screening process, we employ computationally tractable methods that provide qualitatively correct insights. Single vacancy neutral defects (A, M, Se vacancy) were created to study the impact of point defects on the electronic structure of selected potential candidates within a large enough 2 x 2 x 2 supercell to avoid spurious defect-defect interactions. We use 6 x 3 x 2 Γ -centered Monkhorst-Pack mesh for the electronic structure calculations of both pristine and defective cells. We do not perform structural optimization for these defective simulation cells as that requires a considerable amount of computational resources. The representative calculations depict that structural optimization of defective simulation cells does not impact the overall electronic properties. Note that we only consider the neutral state of all the defects as our main objective is to identify overall defect-tolerant candidates.

(vii) Phonon Calculations: To establish the dynamic stability of screened AMSe₃ compounds, we performed phonon calculations using the PHONOPY⁵ package that utilized a finite displacement supercell method for the calculation of forces and construction of the second-order interatomic force constant matrices from the force-displacement data. We used ([0, 3, 3], [1, 0, 1], [1, 1, 0]) supercell transformation matrix to generate relatively isotropic supercells. Each supercell of AMSe₃ has 120 atoms, and we used a $4 \times 4 \times 4$ k-point mesh to calculate the forces on the atoms.

(viii) *Ab initio* Molecular Dynamics: To evaluate the structural stability of the screened materials at ambient conditions (300K), we perform *ab initio* molecular dynamics simulations considering a large $2 \ge 2 \ge 1$ supercell. A canonical ensemble with a Nose-Hoover thermostat has been applied to simulate the AIMD trajectories of the AMSe₃ compounds. The entire molecular dynamics simulation lasted 5 ps with a time step of 1 fs.

(ix) Non Adiabatic Molecular Dynamics:

The *ab initio* NAMD simulations of charge carrier cooling, separation, and recombination are carried out using the fewest switches surface hopping (FSSH) algorithm⁶ corrected for decoherence⁷ to describe the slow recombination process. The evolution of the electronic subsystem is described within the time-dependent Kohn-Sham theory. We utilized 5 picoseconds of AIMD trajectories (with a 1 femtosecond timestep) for computations pertaining to nonadiabatic coupling at the Γ -point. To examine the electron-hole recombination process utilizing the Libra code,⁸ we analyzed all 5000 snapshots along the trajectories and conducted 500 stochastic simulations using the DISH process for each geometry. We subsequently iterated the nonadiabatic Hamiltonian calculated over the 5 ps trajectory to model the charge recombination dynamics occurring over an extended period of 15 ps. We concentrate on electron-hole recombination across the band gap, highlighting the dynamic structural

characteristics that facilitate electron-phonon interactions and restrict carrier lifespan. The short-time linear approximation approach was used to analyze the exponential growth function and to determine the carrier recombination lifetimes of BaZrSe₃, ScYSe₃, and SrHfSe₃.

(b) Machine Learning Models:

The procedure for constructing and validating our machine learning algorithms to predict the thermodynamic stability of ternary selenides—covering their formation energy, distance to the convex hull, and optoelectronic band gap—involves four distinct phases: (i) Generating an inhouse dataset comprising ternary selenides and relevant features to describe their target properties effectively. (ii) Feature engineering, which entails the identification of the most relevant attributes that have a strong correlation with the target properties. (iii) Selecting the optimal machine learning model among a range of potential algorithms offered by libraries like lazypredict, Magpie, and artificial neural networks based on their performance both with and without structural information from ternary selenide composite materials in different chemical composition spaces. (iv) Assessing the importance of the attributes to the ideal model and comprehending their physical connection to the target properties.

(i) **Dataset and feature generation:** To assemble the feature matrix for training our machine learning models, we utilize an extensive elemental property database containing both physical and chemical properties of elements in their atomic state, sourced from the Materials Agnostic Platform for Informatics and Exploration (MAGPIE).⁹ Electronic properties such as Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energy levels are computed via Density Functional Theory (DFT), adhering to the relaxation and self-consistent field criteria mentioned earlier. Detailed descriptions of elemental features can be found in the Section S9. We augment our feature set by performing various mathematical operations—such as finding maximum, minimum, difference, weighted average, and standard

deviation—on corresponding elemental properties of elements A and B while preserving their unit dimensionality. For instance, if we possess electronegativity values for both A and B sites, we calculate their average, minimum, maximum, and std. deviation values. We also introduce novel features to capture structural attributes like the Goldschmidt tolerance factor and octahedral factor despite our non-perovskite system. We derive features for the shortest bond distances of A-Se and M-Se in the crystal structure of ASe or MSe from available sources in OQMD. Additionally, we incorporate mixing enthalpy data for elements in A-M obtained from Miedema's model for binary liquids, all of which are collected from MAGPIE. Consequently, our feature set comprises a total of 343 attributes.

(ii) Feature engineering: In the process of feature engineering, we adhere to the following steps: (a) If a specific column contains missing entries $\geq 10\%$ of the total entries, we eliminate the entire feature column. (b) For the remaining feature columns, we replace them with the mean value of their respective column. (c) Any column with very low variance is removed. (d) Highly correlated features are removed from the independent feature set based on their linear and nonlinear correlations using Pearson and Spearman correlation matrices, with a threshold value set at ≥ 0.95 for both. (e) Finally, we eliminate feature columns that are redundant or irrelevant to the target feature using the Recursive Feature Elimination (RFE)¹⁰ method. RFE identifies the most relevant features by recursively removing those with the smallest weight, as determined by an Extra Trees classifier or regressor in a classification or regression task, respectively. (f) Finally, we standardized the features to ensure uniform scaling across all features, aligning with the typical prerequisite of many machine learning models for standardized feature sets.

(iii) **Selecting the best model:** In this step, we perform two separate machine learning tasks: regression and classification. Before delving into the model selection, we first divided elements

A and M of our 920 data points into four groups: alkaline metals, alkaline earth metals, transition metals, and non-metals. So, in the matrix representation of element $A \times$ element M^{T} , we will have a (4×4) matrix with a total of 16 different combinations. We ensure that the data splitting into train and test is done equally from every 16 combinations in an 80/20 train/test splitting. This way, we can avoid randomly selected data points, which may leave some combinations predominantly for training, potentially resulting in poorer predictions for the test set.

(iv) **Feature importance:** Finally, using the best machine learning model, we compute the Permutation Feature Importance, which assesses the contribution of each feature to the model's statistical performance on a given tabular dataset. This method is especially valuable for non-linear or opaque estimators. It works by randomly shuffling the values of a single feature and then observing how much the model's performance decreases. We determine how much the model relies on such a feature by breaking the relationship between the feature and the target.

Importance of trained ML models:

The trained ML models reveal deep insights into the intricate relationships between structure, stability, and electronic properties of ternary selenides. These models revealed critical dependencies, such as the significant role of lattice parameters in predicting hull stability and the enhanced accuracy of ANN models in high-fidelity band gap prediction. Moreover, these trained models represent a critical step toward developing robust predictive frameworks capable of screening an expansive chemical space, including AMSe₃ compositions with mixed cations or extended to other chalcogenides (e.g., S/Se). Achieving this goal will require comprehensive training datasets to adequately capture the vast chemical space, and we aim to refine and expand our current ML models in future studies.

Figure S1: Composition map depicting 920 combinations of AMSe₃ compounds. The majority of ternary selenides consist of transition metals (~56% elements from the periodic table), while others are post-transition metals (~13%), non-metals (~13%), alkali metals (~9%), and alkaline earth metals. We have considered common oxidation states of each element for constructing the AMSe₃ dataset.

Table S1: Energy per atom of a subset of 200 randomly chosen compounds optimized in four

 different structural phases.

Energy per atom (eV) of compounds in different phases									
Compounds	GdFeO3-	NH4CdCl3-	PbPS ₃ -	FePS ₃ -	Compounds	GdFeO3-	NH4CdCl3-	PbPS ₃ -	FePS ₃ -
-	type	type	type	type	-	type	type	type	type
AgAsSe ₃	-0.700	-0.712	-0.717	-0.711	MnRuSe ₃	-1.208	-1.197	-1.146	-1.143
AgNbSe ₃	-1.009	-1.018	-1.006	-1.015	MnZnSe ₃	-0.888	-0.913	-0.876	-0.884
AlGaSe ₃	-0.789	-0.834	-0.814	-0.820	MoBaSe ₃	-1.083	-1.124	-1.123	-1.107
AllrSe ₃	-0.994	-1.012	-0.956	-0.964	NaVSe ₃	-0.953	-0.968	-0.968	-0.961
AlSbSe ₃	-0.799	-0.843	-0.838	-0.811	NbAgSe ₃	-1.008	-1.025	-1.006	-1.020
AlScSe ₃	-1.042	-1.051	-1.037	-1.029	NbKSe ₃	-1.045	-1.044	-1.050	-1.037
AlYSe3	-1.065	-1.083	-1.066	-1.052	NiMoSe ₃	-1.113	-1.144	-1.144	-1.108
AsAuSe ₃	-0.741	-0.752	-0.740	-0.726	NiSSe ₃	-0.767	-0.797	-0.819	-0.799
AsBSe ₃	-0.842	-0.872	-0.868	-0.892	OsBaSe ₃	-1.060	-1.089	-1.088	-1.078
AsCoSe ₃	-0.896	-0.898	-0.900	-0.876	OsCaSe ₃	-1.036	-1.083	-1.063	-1.059
AsKSe ₃	-0.726	-0.713	-0.744	-0.736	OsGeSe ₃	-1.011	-1.066	-1.020	-1.061
AsLiSe ₃	-0.748	-0.756	-0.760	-0.755	OsPtSe ₃	-1.093	-1.100	-1.097	-1.108
AuAlSe ₃	-0.739	-0.754	-0.760	-0.768	PbBeSe ₃	-0.752	-0.776	-0.792	-0.758
AuRhSe ₃	-0.854	-0.870	-0.818	-0.849	PbHgSe ₃	-0.616	-0.616	-0.622	-0.622
BaHfSe ₃	-1.219	-1.208	-1.198	-1.187	PBiSe ₃	-0.818	-0.818	-0.827	-0.802
BaOsSe ₃	-1.062	-1.058	-1.090	-1.057	PbMgSe ₃	-0.743	-0.727	-0.748	-0.749
BaPdSe ₃	-0.877	-0.854	-0.873	-0.873	PbOsSe3	-1.020	-1.017	-1.027	-1.026
BaPtSe ₃	-0.902	-0.887	-0.882	-0.901	PdCaSe ₃	-0.839	-0.885	-0.870	-0.857
BAsSe ₃	-0.829	-0.876	-0.882	-0.876	PdHfSe3	-1.172	-1.167	-1.178	-1.169
BaSSe ₃	-0.779	-0.798	-0.882	-0.876	PdMoSe ₃	-1.094	-1.120	-1.093	-1.087
BaWSe ₃	-1.166	-1.146	-1.188	-1.166	PdOsSe3	-1.076	-1.079	-1.059	-1.076
BeGeSe ₃	-0.813	-0.811	-0.809	-0.778	PdSiSe ₃	-0.860	-0.884	-0.883	-0.900
BeHfSe ₃	-1.129	-1.167	-1.137	-1.103	PdWSe ₃	-1.158	-1.167	-1.165	-1.160
BeMnSe ₃	-1.018	-1.031	-0.971	-0.959	PdZnSe ₃	-0.709	-0.729	-0.721	-0.744
BeOsSe ₃	-1.066	-1.051	-1.018	-1.011	PGaSe ₃	-0.781	-0.800	-0.796	-0.782
BePtSe ₃	-0.876	-0.895	-0.885	-0.841	PIrSe ₃	-0.989	-1.019	-0.986	-0.966
BeReSe ₃	-1.097	-1.097	-1.093	-1.075	PKSe3	-0.767	-0.743	-0.770	-0.780
BeSiSe ₃	-0.819	-0.863	-0.857	-0.829	PRbSe3	-0.764	-0.735	-0.757	-0.777
BeTiSe ₃	-1.027	-1.058	-1.023	-1.001	PtBeSe ₃	-0.829	-0.888	-0.856	-0.888
BeWSe ₃	-1.122	-1.165	-1.110	-1.108	PtCoSe3	-0.964	-0.983	-0.958	-0.993
BeZrSe ₃	-1.074	-1.110	-1.091	-1.052	PtHgSe ₃	-0.656	-0.725	-0.684	-0.724
BFeSe ₃	-1.017	-1.023	-0.992	-1.004	PtMgSe ₃	-0.789	-0.854	-0.843	-0.836
BiBSe ₃	-0.818	-0.851	-0.877	-0.873	PtNiSe ₃	-0.914	-0.939	-0.918	-0.946
BiCoSe ₃	-0.889	-0.884	-0.865	-0.862	PtReSe ₃	-1.149	-1.172	-1.158	-1.165
BiGaSe ₃	-0.759	-0.791	-0.771	-0.781	RbAsSe ₃	-0.701	-0.699	-0.716	-0.723
BiIrSe ₃	-0.962	-0.940	-0.929	-0.924	RbPSe ₃	-0.711	-0.735	-0.770	-0.757
BiTlSe ₃	-0.700	-0.721	-0.705	-0.715	RbSbSe ₃	-0.698	-0.704	-0.725	-0.719
BiYSe ₃	-1.046	-1.052	-1.022	-1.019	RbTaSe ₃	-1.085	-1.107	-1.101	-1.092
CaGeSe ₃	-0.827	-0.862	-0.845	-0.839	ReBeSe ₃	-1.062	-1.129	-1.062	-1.122
CaMoSe ₃	-1.103	-1.101	-1.089	-1.086	ReCdSe ₃	-0.950	-1.004	-0.977	-0.989
CaRuSe ₃	-1.018	-1.031	-1.000	-0.990	ReCuSe ₃	-1.068	-1.097	-1.070	-1.090
CaSnSe ₃	-0.837	-0.838	-0.838	-0.841	ReZnSe ₃	-0.969	-1.011	-0.968	-0.997
CaTcSe ₃	-1.067	-1.068	-1.071	-1.066	RhAuSe ₃	-0.848	-0.877	-0.857	-0.879
CaTiSe ₃	-1.090	-1.089	-1.067	-1.065	RhCoSe ₃	-1.033	-1.044	-1.055	-1.045
CdGeSe ₃	-0.666	-0.675	-0.705	-0.681	RhCrSe ₃	-1.134	-1.168	-1.152	-1.152
CdPdSe ₃	-0.702	-0.718	-0.721	-0.706	RhGaSe ₃	-0.871	-0.938	-0.889	-0.929
CdReSe ₃	-0.965	-0.997	-0.978	-0.984	RhRuSe ₃	-1.120	-1.128	-1.120	-1.117

CdTeSe ₃	-0.597	-0.613	-0.610	-0.584	RhSbSe ₃	-0.883	-0.950	-0.904	-0.937
CoGaSe ₃	-0.851	-0.903	-0.880	-0.899	RhTlSe ₃	-0.819	-0.868	-0.821	-0.869
CoPbSe ₃	-0.887	-0.910	-0.894	-0.901	RuCrSe ₃	-1.195	-1.217	-1.214	-1.206
CoReSe ₃	-1.197	-1.209	-1.189	-1.200	RuIrSe ₃	-1.148	-1.171	-1.137	-1.142
CoScSe ₃	-1.085	-1.131	-1.090	-1.085	RuMnSe ₃	-1.180	-1.202	-1.169	-1.182
CoSnSe ₃	-0.891	-0.919	-0.898	-0.920	RuPSe ₃	-0.974	-1.023	-0.996	-1.037
CrBSe ₃	-1.031	-1.120	-1.063	-1.103	RuRhSe ₃	-1.113	-1.121	-1.099	-1.104
CrCoSe ₃	-1.136	-1.155	-1.108	-1.089	RuYSe ₃	-1.179	-1.238	-1.215	-1.210
CrRhSe ₃	-1.159	-1.169	-1.126	-1.092	SbAsSe ₃	-0.786	-0.807	-0.798	-0.785
CsTaSe ₃	-1.082	-1.094	-1.101	-1.106	SbRbSe ₃	-0.719	-0.706	-0.731	-0.719
CuGeSe ₃	-0.751	-0.776	-0.783	-0.773	SbScSe ₃	-1.019	-1.028	-1.009	-0.997
CuHfSe ₃	-1.107	-1.130	-1.110	-1.104	ScPSe ₃	-1.025	-1.050	-1.033	-1.048
CuPbSe ₃	-0.759	-0.764	-0.761	-0.764	ScSbSe ₃	-0.999	-1.033	-1.001	-0.998
CuSSe ₃	-0.691	-0.718	-0.744	-0.722	SiBeSe ₃	-0.836	-0.853	-0.867	-0.858
CuTcSe ₃	-1.022	-1.034	-1.001	-1.003	SiNiSe ₃	-0.885	-0.920	-0.907	-0.892
CuZrSe ₃	-1.052	-1.073	-1.061	-1.053	SnFeSe ₃	-0.955	-0.962	-0.945	-0.953
FeBSe ₃	-0.954	-1.047	-1.014	-1.053	SnSrSe ₃	-0.816	-0.849	-0.817	-0.817
FeCoSe ₃	-1.058	-1.081	-1.057	-1.064	SrSiSe ₃	-0.870	-0.910	-0.902	-0.884
GaBiSe ₃	-0.751	-0.783	-0.784	-0.750	SrTiSe ₃	-1.084	-1.066	-1.079	-1.061
GaInSe ₃	-0.727	-0.757	-0.758	-0.737	TaCsSe ₃	-1.120	-1.112	-1.126	-1.106
GaIrSe ₃	-0.939	-0.966	-0.907	-0.906	TaHgSe ₃	-1.506	-0.997	-0.996	-0.995
GaSbSe ₃	-0.746	-0.785	-0.781	-0.743	TaKSe ₃	-1.121	-1.121	-1.125	-1.112
GeCaSe ₃	-0.829	-0.846	-0.838	-0.812	TaTlSe ₃	-1.079	-1.115	-1.112	-1.103
GeCdSe ₃	-0.679	-0.674	-0.682	-0.685	TcCuSe ₃	-1.010	-1.031	-1.011	-1.025
GeCuSe ₃	-0.773	-0.778	-0.789	-0.776	TcGeSe ₃	-1.014	-1.069	-1.021	-1.045
GeHfSe3	-1.152	-1.168	-1.151	-1.126	TcMnSe ₃	-1.222	-1.267	-1.208	-1.236
GeMgSe ₃	-0.752	-0.752	-0.759	-0.752	TcPtSe ₃	-1.090	-1.107	-1.090	-1.090
GeMoSe ₃	-1.066	-1.105	-1.055	-1.068	TeBaSe ₃	-0.775	-0.794	-0.771	-0.758
GeTiSe3	-1.044	-1.058	-1.032	-1.030	TeCdSe ₃	-0.611	-0.614	-0.611	-0.617
GeZnSe ₃	-0.694	-0.693	-0.696	-0.704	TeMgSe ₃	-0.692	-0.691	-0.680	-0.686
HfCaSe ₃	-1.197	-1.204	-1.193	-1.188	TiCaSe ₃	-1.090	-1.091	-1.082	-1.069
HfGeSe ₃	-1.135	-1.180	-1.143	-1.150	TiCuSe ₃	-1.011	-1.024	-1.015	-1.012
HfSrSe ₃	-1.192	-1.205	-1.197	-1.181	TiGeSe ₃	-1.048	-1.068	-1.050	-1.050
HgPtSe ₃	-0.681	-0.719	-0.694	-0.675	TiHgSe ₃	-0.859	-0.856	-0.878	-0.878
HgReSe ₃	-0.907	-0.933	-0.926	-0.928	TiPdSe ₃	-1.068	-1.098	-1.068	-1.049
HgSnSe ₃	-0.614	-0.631	-0.632	-0.599	TIAlSe3	-0.734	-0.755	-0.775	-0.750
InAuSe ₃	-0.686	-0.691	-0.697	-0.680	TlAuSe ₃	-0.637	-0.649	-0.666	-0.644
InGaSe ₃	-0.719	-0.755	-0.749	-0.749	TlCrSe ₃	-0.944	-0.955	-0.930	-0.927
InPSe ₃	-0.757	-0.786	-0.783	-0.787	TlIrSe ₃	-0.883	-0.910	-0.865	-0.858
InRuSe ₃	-0.948	-0.950	-0.926	-0.937	TIScSe3	-0.930	-0.932	-0.930	-0.932
IrCdSe ₃	-0.812	-0.869	-0.834	-0.875	VCsSe ₃	-0.963	-0.964	-0.987	-0.965
IrHgSe ₃	-0.767	-0.823	-0.792	-0.827	VNaSe ₃	-0.959	-0.973	-0.975	-0.965
IrRhSe ₃	-1.087	-1.110	-1.066	-1.114	WNiSe3	-1.172	-1.210	-1.176	-1.207
IrRuSe ₃	-1.148	-1.167	-1.158	-1.156	WPdSe ₃	-1.151	-1.197	-1.156	-1.174
IrYSe ₃	-1.154	-1.237	-1.195	-1.178	YBiSe ₃	-1.038	-1.055	-1.043	-1.013
IrZnSe ₃	-0.836	-0.870	-0.842	-0.898	YIrSe ₃	-1.220	-1.188	-1.200	-1.168
KNbSe3	-1.020	-1.041	-1.038	-1.022	YPSe3	-1.058	-1.065	-1.065	-1.062
KVSe3	-0.944	-0.970	-0.978	-0.969	Y RhSe3	-1.182	-1.185	-1.163	-1.123
LiAsSe3	-0.743	-0.757	-0.742	-0.734	YTISe3	-0.954	-0.969	-0.948	-0.965
LISDSe3	-0.741	-0.748	-0.746	-0.719	ZnMnSe ₃	-0.911	-0.923	-0.878	-0.870
MgHfSe3	-1.110	-1.117	-1.124	-1.086	ZnOsSe ₃	-0.950	-0.944	-0.918	-0.923
MgPbSe3	-0.742	-0.750	-0.745	-0.723	ZrCdSe ₃	-0.969	-0.978	-0.962	-0.990
MgTiSe3	-1.000	-0.995	-0.979	-0.988	ZrPtSe ₃	-1.157	-1.173	-1.135	-1.126

Section S2: Structural parameters of AMSe₃ compounds:

S2.1 Previous studies involving the NH₄CdCl₃-like Orthorhombic Pnma phase

Previous studies have demonstrated the stability of the NH₄CdCl₃-like Orthorhombic Pnma phase as the most stable among the competing phases. Ong et al. performed an extensive ab initio study to assess the phase stability of BaZrSe₃, revealing the preference for NH₄CdCl₃-like orthorhombic phase over other competing phases.¹¹ Tranchitella et al. reported the experimental synthesis of a series of Sr_{1-x}Ba_xZrSe₃ compounds in the NH₄CdCl₃-like orthorhombic phase.¹² SrHfSe₃ was successfully synthesized by Moroz et al. in NH₄CdCl₃-like Orthorhombic Pnma structure.¹³ Various studies have demonstrated that the synthesis of NH₄CdCl₃-like orthorhombic phases can be achieved at reduced temperatures.

S2.2 Lattice parameters of AMSe3 in NH₄CdCl₃-like phase

The lattice parameters of our 920 ternaries exhibit a non-uniform distribution (as shown in Figure S3). The lattice constant 'c' spans widely across a range of 13.08 Å with a mean \pm average absolute deviation of 14.32 \pm 1.54 Å. Following this, the lattice constant 'b' displays a distribution range of 8.31 Å with a mean \pm average absolute deviation of 9.41 \pm 0.78 Å. Conversely, the lattice constant 'a' exhibits a narrower distribution, spanning 2.51 Å with a mean \pm average absolute deviation of 3.89 \pm 0.22 Å. This non-uniformity comes from the different orientations of octahedra in various directions. Along the lattice constant 'a', octahedra are densely packed, sharing edges without intervening space. However, along the lattice constants 'b' and 'c', only two octahedra are connected, leaving a gap to the next replica of these connected octahedra by an average value of 9.41 Å and 14.32 Å, respectively (shown in Figure S3).

Figure S2: Schematics depicting anisotropy of lattice parameters of AMSe3.

Figure S3: Distribution of lattice parameters a, b, and c for entire AMSe₃ dataset. The lattice parameter a has much narrower distribution than other two lattice parameters.

Section S3: Thermodynamic stability:

Figure S4: Distribution of (a) formation energy and (b) energy above hull values for all 920 candidates, (c) Percentage of AMSe₃ within certain range of hull and formation energies, (d) Scatter plot between E_h and E_f exhibiting no clear correlation between these two stability parameters.

S3.1 Formation Energy and Hull Stability: In materials science, the thermodynamic stability of a material is gauged by its hull distance (E_h), which represents the energy of decomposition. This energy (E_h) is the material's formation energy (E_f) relative to all other compounds within a defined chemical space. While E_f indicates the degree to which a compound can form from its constituent elements, the hull distance (E_h) dictates phase stability that arises from the competition among the formation energies (E_f) of all compounds within the given chemical space.

The formation energy of the materials in our dataset is predominantly less than 0 eV per atom, with 93.26% of the materials being formable ($E_f \le 0$ eV per atom), as shown in Figures S4a d, representing the histogram and bar plot, respectively. While E_f typically ranges on the order of several eV, the E_h values are generally 1-2 orders of magnitude smaller. Additionally, the energies associated with hull distance exhibit highly nonlinear behaviour around zero (Figure S6c). Whereas E_f shows a relatively uniform distribution across a broad range of energies, with a mean \pm average absolute deviation of -0.45 \pm 0.31 eV per atom (Figure S4a), E_h covers a much narrower energy range, with a mean \pm average absolute deviation of 0.18 \pm 0.09 eV/atom (Figure S4b). We also performed the same tripartite division for the subset with $E_f > 0$ eV per atom. However, the proportion of stable and metastable candidates in this subset is insignificant, at 0.11% and 1.85%, respectively, while the unstable candidates constitute 4.79% (refer to Figure S4c).

Table S2: AMSe3 candidates with $E_h = 0$ eV/atom along with their formation energy per atomin NH4CdCl3-type phase.

Compound	Formation energy in NH4CdCl3-type phase (eV/atom)	Formation energy for AMSe ₃ as included in OQMD* (eV/atom)
RbNbSe ₃	-0.870	
CsNbSe ₃	-0.888	-0.832 (id:1482812)
CaTcSe ₃	-0.870	
SrMnSe ₃	-1.038	
SrTeSe ₃	-0.826	-0.789 (id: 1347292)
BaHfSe ₃	-1.643	
BaMnSe ₃	-1.034	
BaTeSe ₃	-0.863	
BaZrSe ₃	-1.639	
LaYSe ₃	-1.965	
CrAsSe ₃	-0.325	-0.318 (id: 1733621)
MnHgSe ₃	-0.280	
NiMnSe ₃	-0.348	

CuTcSe ₃	-0.171	
HgMnSe ₃	-0.281	
GaRhSe ₃	-0.515	
GeMnSe ₃	-0.375	
AsAlSe ₃	-0.477	
SbAlSe ₃	-0.544	
SbInSe ₃	-0.388	
BiAlSe ₃	-0.613	
BiAsSe ₃	-0.258	
BiCrSe ₃	-0.465	
BiInSe ₃	-0.469	
BiRhSe ₃	-0.417	

*In bracket, we provide the compound ID from OQMD database.

We find that none of these compounds are documented in NH₄CdCl₃-type phase within established materials databases, such as the Materials Project and the Open Quantum Materials Database (OQMD). The phases for some of these compounds that are included in OQMD, are unstable compared to NH₄CdCl₃-type phase as shown in the 3rd column of Table S2. For the comparison of formation energy values with the OQMD entries, we have calculated them using our own parameters and have taken structure from the OQMD.

Figure S5: Percentage distribution of hull stable/metastable AMSe₃ compounds in each chemically distinct region.

S3.2 Experimental realization of Metastable phases of materials: Several evidence suggest that materials with a convex hull distance near zero are prime candidates for successful synthesis under experimental conditions. Metastable phases, typically challenging to synthesize, have been experimentally validated in several cases.¹⁴ By broadening the convergence region of the convex hull to 0.1 eV/atom, metastable candidates are found to be distributed across a wide compositional range. This expanded approach aligns with the methodologies adopted in other high-throughput studies, which have similarly employed critical tolerance values for the convex hull.^{15–17} The experimental methods can be fine-tuned to stabilize these promising AMSe₃ systems for optoelectronic applications.

Advanced experimental synthesis techniques enable the discovery of functional selenide materials beyond traditional equilibrium phases and compositions. High-temperature synthesis methods, such as those utilizing resistive-bearing furnaces^{18–20} or superfast heating techniques²¹, have become invaluable in this pursuit. These methods have been extensively applied to the synthesis of metastable nanomaterials, including single-atom alloys²², high-entropy alloys,²³ and oxides.²⁴ The efficacy of high-temperature synthesis platforms lies in their ability to control key reaction parameters precisely. By adjusting reaction time, temperature, the choice of reactants, and atmospheric conditions, researchers can effectively navigate the synthesis of metastable compositions. This control helps to prevent undesirable phenomena such as phase separation, coarsening, and ripening, which can compromise the stability and purity of the synthesized materials. The implications of these advancements are profound. With the capability to stabilize metastable phases, a broader range of functional materials can be accessed, offering new opportunities for technological applications.

Advanced experimental synthesis techniques enable the discovery of functional selenide materials beyond traditional equilibrium phases and compositions. High-temperature synthesis methods, such as those utilizing resistive-bearing furnaces^{18–20} or superfast heating techniques²¹, have become invaluable in this pursuit. These methods have been extensively applied to the synthesis of metastable nanomaterials, including single-atom alloys²², high-entropy alloys,²³ and oxides.²⁴ The efficacy of high-temperature synthesis platforms lies in their ability to control key reaction parameters precisely. By adjusting reaction time, temperature, the choice of reactants, and atmospheric conditions, researchers can effectively navigate the synthesis of metastable compositions. This control helps to prevent undesirable phenomena such as phase separation, coarsening, and ripening, which can compromise the stability and purity of the synthesized materials. The implications of these advancements are profound. With

the capability to stabilize metastable phases, a broader range of functional materials can be accessed, offering new opportunities for technological applications.

Figure S6: Scatter plot between (a) μ (octahedral factor) and t*(modified tolerance factor) and (b) μ (octahedral factor) and τ (Goldschmidt tolerance factor). These plots illustrate that traditional geometry parameters are not suitable for classifying stability/instability region of AMSe₃.

Section S4: Machine Learning models involving thermodynamic stability:

Figure S7: Prediction of E_f using (a) Hist gradient boosting regressor and (b) XGBoost regressor models. These models use elemental and compositional features for training and testing.

S4.1 Hull stability regression: Predicting the exact numerical values of the hull distances for AMSe₃ materials using only elemental and compositional features is challenging, as phase stability is not an intrinsic property of the materials. The best regressor model with elemental features, the gradient boosting regressor, achieves a test MAE of 0.05 eV/atom. However, when we include lattice parameters as features, the hist gradient boosting regressor model outperformed the others, reducing the test MAE to 0.04 eV/atom—a 20% improvement in accuracy.

Given the high prediction accuracy for the formation energy of the materials, we included the formation energy values as a feature to predict hull distances. Although Figure S4d shows no direct relationship between formation energy and hull distance, the BayesianRidge model successfully predicts hull distances with a test MAE of approximately 0.04 eV/atom, even without incorporating lattice parameters as features, as shown in Figure S8(a). The inclusion of lattice parameters here in feature list, however, does not improve the model accuracy any further (Figure S8b).

Figure S8: Prediction of E_h with hist gradient boost regressor model considering (i) E_f and elemental features (no lattice parameters included) and (ii) E_f , elemental features, and lattice parameters as features.

S4.2 Feature importance for thermodynamic stability:

We briefly discuss the significance of various features of the target properties. This analysis elucidates the contribution of each feature to the target. When the direct mathematical relationship between the target and features is unknown, the ML model identifies the importance of specific features. This insight facilitates the connection of these features to the target property, thereby enhancing our understanding of the material's physical characteristics and are extremely valuable for strategically designing stable functional materials that are yet to be realized experimentally.

Section S5: Electronic Properties

S5.1 Machine Learning models involving Bandgap prediction:

Bandgap regression: First, we utilize only elemental and compositional features to predict the numerical values of the HSE06 bandgap for ternary selenides. Training the model with this

information for bandgap prediction is challenging, as the R² value for the best model is approximately 70%. However, the Mean Absolute Error (MAE) is relatively low, around 0.24 eV. Various models, including hist gradient boosting regressor, LGBMRegressor, XGBRegressor, RandomForestRegressor, and ExtraTreesRegressor, perform similarly, with MAE values ranging between 0.24 and 0.26 eV.

Incorporating lattice parameters as structural features does not lead to a significant improvement in prediction accuracy. The LGBMRegressor model, for instance, achieves an MAE of 0.23 eV. Additionally, the feature importance of lattice constants is considerably lower than that of elemental features such as max_ion_ener and max_phi.

Figure S9: Bandgap prediction by using (a) elemental features only, (b) elemental and lattice parameters as features.

Examining the correlation between GGA-PBE and HSE06-level bandgap values, there is no significant correlation in the narrower bandgap region (PBE Band Gap ≤ 0.2 eV and HSE06 Band Gap ≤ 0.8 eV, as shown in Figure S11b). However, in the wider bandgap regions, a linear

relationship emerges. By including GGA-PBE bandgap values as a feature, the ANN model demonstrates improved accuracy, achieving an MAE of 0.16 eV.

Figure S10: (a) HSE06 bandgap vs energy above hull (E_h) and (b) HSE06 bandgap and formation energy (E_f). Both E_h and E_f exhibit a negative correlation with the HSE06 bandgap.

Figure S11: (a) Feature importance of ANN model when PBE bandgap is included as a feature and (b) Scatter plot between GGA-PBE and HSE06 band gaps displaying correlation.

Figure S12: A/M composition map of 137 stable ($E_h < 0.1 \text{ eV/atom}$ and $E_f \le 0 \text{ eV/atom}$) candidates having HSE06 bandgap > 0.5 eV.

Figure S13: pDOS of a few representative AMSe₃ candidates.

Figure S14: Projected density of state plots for BMSe₃ systems (M= Co, Ir, Rh).

Figure S15: Density of States plot for (a) different A cations in AMSe₃ having M=Zr, Hf. (b) Compounds having non-metal cation as 'M'. (c) Compounds having rare earth elements at both 'A' and 'M' sites.

S5.2 Chemical Trends in Compounds with suitable direct bandgap

The screened compounds frequently contain A-site elements that include a variety of p-block (such as As, Bi, and Sb) and s-block elements (like Li, Na, and Ca), suggesting that both heavier post-transition metals and lighter alkali and alkaline earth metals can stabilize NH4CdCl₃-phase structures with desirable electronic properties. The relatively heavy alkaline earth metals like Sr and Ba also occupy A-sites in these AMSe₃ compounds. However, most of these A-site elements do not contribute to the band edge states, remaining largely inert to the electronic properties of the corresponding AMSe₃.

The M-site elements of AMSe₃ display a similarly broad chemical space involving transition metals (such as Co, Rh, and Ir) and main group elements (like Al, Ga, and Ge) (Figure 4). Notably, several screened compounds include M-site elements like Zr, Hf, and Ti, which are commonly reported to form stable ternary sulfides and selenides in different phases. As M-sites form MSe₆ octahedra, large variation in elemental space suggests an inherently flexible coordination environment in these ternary compounds. Furthermore, the M-site elements significantly tune the overall electronic properties as those dominantly compose the CBM state of AMSe₃.

We also note that the presence of heavy metals (such as Ir and Bi) and lighter elements (such as Al and Li) in the same structure points to a potential for tunable electronic and optical properties driven by the intrinsic properties of these elements. The large mass difference in the constituent elements indicates a possible modification in the phonon spectrum and vibronic couplings, eventually boosting the excited state charge carrier dynamics in these photoactive materials. **Table S3:** Comparison of band gaps of a few screened AMSe₃ with their values as reported in various previous work.

Compound	HSE06 Bandgap (this study)	Previous study
1. SrHfSe ₃	1.0 eV	1.0 eV (expt.) ²⁵
2. CaZrSe ₃	1.11 eV	$1.0 \text{ eV} (\text{theor.})^{26}$
3. BaZrSe ₃	0.99 eV	$1 \text{ eV} (\text{theor.})^{26}$
4. SrZrSe ₃	0.84 eV	$0.86 \text{ eV}(\text{theor.})^{26}$
5. CaHfSe ₃	1.18 eV	$1.10 \text{ eV}(\text{theor.})^{26}$

Table S4: List of screened candidates having direct HSE06 Bandgap > 0.5 eV along with their hole and electron effective masses. Green- Candidates having ultralow effective charge carrier masses. Red- Candidates failing the effective mass screening criteria.

Compound	HSE06 Bandgap(eV)	me*	m _h *	Selected?
AlCoSe ₃	1.62	1.184	-4.309	
AlPSe ₃	1.41	0.364	-0.514	
AsAlSe ₃	1.72	0.601	-0.966	
AsRhSe ₃	0.61	0.501	-0.535	
AsYSe ₃	1	0.364	-0.483	
BaTiSe ₃	0.56	0.41	-0.472	
BaZrSe ₃	0.99	0.482	-0.587	
BCoSe ₃	1.34	0.474	-1.035	
BiAsSe ₃	1.32	0.525	-1.325	
BIrSe ₃	1.03	0.672	-0.78	
BiSbSe ₃	0.79	0.205	-0.468	
BiScSe ₃	1.36	0.346	-0.611	
BRhSe ₃	1.54	0.461	-0.802	
CaHfSe ₃	1.18	0.877	-0.826	
CaZrSe ₃	1.11	0.479	-0.306	
CdSnSe ₃	1.12	0.331	-1.891	

CrInSe ₃	1.02	0.819	-1.547	
GaAlSe ₃	2	1.376	-1.402	
GaIrSe ₃	1.41	0.205	-0.696	
GeHfSe ₃	1.04	1.357	-1.815	
GeZrSe ₃	0.85	0.406	-0.525	
HgHfSe ₃	2.02	0.993	-1.316	
InRhSe ₃	0.65	0.181	-0.535	
InSbSe ₃	1.34	0.217	-0.387	
IrLaSe ₃	1.2	1.02	-1.523	
LaIrSe ₃	1.08	0.58	-3.001	
LaScSe ₃	0.82	0.531	-0.656	
LiNbSe ₃	0.66	1.41	-2.078	
MgTeSe ₃	1.12	0.346	-0.291	
MnMgSe ₃	1.07	0.741	-0.432	
NaNbSe ₃	0.63	1.432	-0.967	
NaTaSe ₃	0.76	0.978	-0.994	
NbLiSe ₃	0.97	1.412	-3.327	
NbNaSe ₃	1.1	1.458	-0.713	
PAlSe ₃	1.27	1.022	-0.678	
PbTiSe ₃	1.02	7.69	-0.503	
PScSe ₃	0.89	7.16	-1.359	
RhAsSe ₃	0.97	0.637	-0.642	
RhLaSe ₃	0.79	0.852	-0.39	
RhYSe ₃	0.82	1.283	-0.879	
ScGaSe ₃	2.54	0.548	-1.397	
ScYSe ₃	1.43	0.569	-0.639	
SrHfSe ₃	1	0.401	-0.536	
SrZrSe ₃	0.84	0.968	-0.558	
TlTaSe ₃	0.51	1.601	-1.659	
YLaSe ₃	1.25	0.364	-0.483	
YRhSe ₃	0.56	0.476	-0.641	
YSbSe ₃	1.72	0.363	-0.485	
YScSe ₃	0.96	0.679	-0.63	
ZrGeSe ₃	0.88	10.904	-0.511	

Optoelectronic performance:

Figure S16: Absorption spectra of a few candidates with high SLME values. The sharp increase in adsorption coefficient at the band edge indicates high power conversion efficiency of these absorber materials.

Phase stability of screened materials

Table S5: Phase stability investigation of compounds having ultralow carrier effective masses. Orthorhombic Pna2₁ structure with corner-shared octahedra emerges as the most common competing phase for NH₄CdCl₃-like Orthorhombic Pnma compounds. The green coloured phase is the most stable one.

Compound	Total Energy of compound (in eV)				
	Monoclinic	NH ₄ CdCl ₃ -	Monoclinic	Orthorhombic	
	P1c1	Orthorhombic	C12m	Pna2 ₁	
		Pnma			
BaZrSe ₃	-113.06	-116.54	-111.57	-116.52	
BiScSe ₃	-99.69	-102.26	-99.9	-102.25	
BRhSe ₃	-99.57	-98.7	-99.74	-98.7	
CaHfSe ₃	-116.73	-120.37	-116.76	-120.37	
CaZrSe ₃	-111.55	-115.93	-111.54	-114.94	
GaIrSe ₃	-89.7	-93.43	-90.16	-95.65	
GeHfSe ₃	-113.29	-115.22	-112.26	-115.21	
GeZrSe ₃	-107.8	-109.92	-107.5	-109.22	
InRhSe ₃	-83.88	-88.03	-84.24	-89.01	
MgTeSe ₃	-69.14	-67.4	-67.5	-69.48	
NaTaSe ₃	-109.05	-109.53	-108.56	-109.4	
ScYSe ₃	-58.2	-125.95	-124.96	-125.92	
SrHfSe ₃	-116.37	-120.14	-115.2	-120.14	
SrZrSe ₃	-113.89	-114.75	-111.11	-114.75	
YScSe ₃	-125.72	-128.44	-125.29	-128.44	
InSbSe ₃	-65.9	-79.42	-66.6	-76.1	
AlPSe ₃	-80.38	-82.38	-84.33	-85.88	

Defect tolerance:

Figure S17: pDOS plots displaying the effect of (a) A cation vacancy, (b) M cation vacancy and (c) Se vacancy on screened AMSe3's.

(f) Thin-film Photovolatics:

Figure S18: Thickness-dependent SLME of screened candidates.

Figure S19: Phonon dispersions of screened candidates depicting the dynamical stability of these compounds due to the absence of any negative frequencies.

Figure S20: Temperature evolution over time during AIMD. These simulations are performed at 300 K.

Figure S21: Structures of (a) BaZrSe₃, (b) ScYSe₃, and (c) SrHfSe₃ over time during AIMD.

Further reinforcing these findings, we tracked the temperature evolution over time, as depicted in Figure S18. The temperature profiles for BaZrSe₃, ScYSe₃, and SrHfSe₃ exhibit minimal fluctuations, which, in conjunction with the constrained energy oscillations, corroborate the high thermal stability of these compounds. The convergence of both energy and temperature data provides compelling evidence that the AMSe₃ selenides can effectively maintain their structural integrity and stability under ambient conditions.

Section S8. Non Adiabatic Molecular Dynamics:

The carrier lifetimes of these materials are similar to that of inorganic halide perovskites and similar optoelectronic materials. Li et al. reported a non-radiative carrier lifetime of 1.45 ns for CsPbBr₃, which is one of the well-explored all-inorganic perovskite material and is known for its exceptional optoelectronic properties but is not suitable for practical use due to its lead toxicity.²⁷ Moreover, Zhao et al. reported a non-radiative carrier lifetime of 2.1 ns for CsPbI₃, which is comparable to our representative materials.

As observed from the time-averaged bandgap shown in Fig. 7(d), the bandgap value increases from 0.98 to 1.42 eV. This trend is in line with the inverse dependence of carrier lifetime on the bandgap values as described by Fermi's golden rule. Furthermore, the rate at which non-radiative recombination occurs is directly proportional to the square of the non-adiabatic coupling (NAC) strength. This strength indicates the probability of non-adiabatic transitions. The time-averaged NAC values indicated in Fig. 7d indicate the presence of faster recombination in the case of BaZrSe₃ and SrHfSe₃ than that of ScYSe₃. Primarily, these NAC values seem to have a relation with the bandgap values, which indicates that a smaller bandgap gives rise to stronger NAC coupling. The suitable band gap and decoupled electron-phonon dynamics in these ternary selenides result in a promisingly long carrier lifetime. We emphasize that all three materials have a relatively high non-radiative carrier lifetime, which is particularly important for potential optoelectronic applications.

Figure S22: Partial DOS plots of final screened candidates.

Section S8: Descriptions of elemental features:

Features' Name (Abbreviation)	Description	
min_mendeleev_number	Minimum mendeleev number*	
min_electronegativity	Minimum electronegativity*	
avg_electronegativity	Average electronegativity*	

min_phi	Minimum work function*
max_ion_ener	Maximum ionization energy*
avg_ion_ener	Average ionization energy*
min_first_ionization_energy	Minimum first ionization energy*
Latt_b	Lattice parameter b
max_heat_fusion	Maximum heat fusion*
A_n_ws^third	Electron density at surface of Wigner-Sietz cell of A
Latt_c	Lattice parameter c
Latt_a	Lattice parameter a
A_Se_bond_distance	The bond distance between A and Se in the ASe bulk system
avg_LUMO	Average LUMO*
A_phi	Workfunction of A
min_electron_affinity	Minimum electron affinity*
max_MeltingT	Maximum melting temperature*
max_phi	Maximum work function*
E_hull	Energy above hull
E_form	Formation energy
avg_ZungerPP_r-pi	Average Zunger pseudopotential radius*

min_MV	Minimum molar volume*
avg_space_group_number	Average space group number*
moDiff_ion_ener	Modulus of the difference of the ionization energy *
max_n_ws^third	Maximum electron density at the surface of Wigner-Sietz
	cell*

Note: The '*' sign refers here to the value of all properties chosen between A and M.

References:

- Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python Materials Genomics (Pymatgen): A Robust, Open-Source Python Library for Materials Analysis. *Comput Mater Sci* 2013, 68, 314–319. https://doi.org/10.1016/j.commatsci.2012.10.028.
- Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. *APL Mater* 2013, *1* (1). https://doi.org/10.1063/1.4812323.
- Jain, M.; Chelikowsky, J. R.; Louie, S. G. Reliability of Hybrid Functionals in Predicting Band Gaps. *Phys Rev Lett* 2011, 107 (21), 216806. https://doi.org/10.1103/PhysRevLett.107.216806.
- Yu, L.; Zunger, A. Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials. *Phys Rev Lett* 2012, *108* (6), 068701. https://doi.org/10.1103/PhysRevLett.108.068701.
- Togo, A.; Chaput, L.; Tadano, T.; Tanaka, I. Implementation Strategies in Phonopy and Phono3py. *Journal of Physics: Condensed Matter* 2023, 35 (35), 353001. https://doi.org/10.1088/1361-648X/acd831.
- (6) Tully, J. C. Molecular Dynamics with Electronic Transitions. *J Chem Phys* 1990, 93
 (2), 1061–1071. https://doi.org/10.1063/1.459170.

- (7) Bittner, E. R.; Rossky, P. J. Quantum Decoherence in Mixed Quantum-Classical Systems: Nonadiabatic Processes. *J Chem Phys* **1995**, *103* (18), 8130–8143. https://doi.org/10.1063/1.470177.
- (8) Akimov, A. V. Libra: An Open-Source "Methodology Discovery" Library for Quantum and Classical Dynamics Simulations. *J Comput Chem* 2016, 37 (17), 1626–1649. https://doi.org/10.1002/jcc.24367.
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials. *NPJ Comput Mater* 2016, 2 (1), 16028. https://doi.org/10.1038/npjcompumats.2016.28.
- (10) Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer
 Classification Using Support Vector Machines. *Mach Learn* 2002, 46 (1/3), 389–
 422. https://doi.org/10.1023/A:1012487302797.
- Ong, M.; Guzman, D. M.; Campbell, Q.; Dabo, I.; Jishi, R. A. BaZrSe3: *Ab Initio* Study of Anion Substitution for Bandgap Tuning in a Chalcogenide Material. *J Appl Phys* 2019, *125* (23). https://doi.org/10.1063/1.5097940.
- Tranchitella, L. J.; Chen, B.-H.; Fettinger, J. C.; Eichhorn, B. W. Structural Evolutions in the Sr1–Ba ZrSe3Series. *J Solid State Chem* 1997, *130* (1), 20–27. https://doi.org/10.1006/jssc.1996.7253.
- Moroz, N. A.; Bauer, C.; Williams, L.; Olvera, A.; Casamento, J.; Page, A. A.; Bailey, T. P.; Weiland, A.; Stoyko, S. S.; Kioupakis, E.; Uher, C.; Aitken, J. A.; Poudeu, P. F. P. Insights on the Synthesis, Crystal and Electronic Structures, and Optical and Thermoelectric Properties of Sr _{1-x}Sb _x HfSe ₃ Orthorhombic Perovskite. *Inorg Chem* **2018**, *57* (12), 7402–7411. https://doi.org/10.1021/acs.inorgchem.8b01038.
- (14) Aykol, M.; Dwaraknath, S. S.; Sun, W.; Persson, K. A. Thermodynamic Limit for Synthesis of Metastable Inorganic Materials. *Sci Adv* 2018, *4* (4). https://doi.org/10.1126/sciadv.aaq0148.
- (15) Opahle, I.; Parma, A.; McEniry, E. J.; Drautz, R.; Madsen, G. K. H. High-Throughput Study of the Structural Stability and Thermoelectric Properties of Transition Metal Silicides. *New J Phys* **2013**, *15* (10), 105010. https://doi.org/10.1088/1367-2630/15/10/105010.
- Singh, H. K.; Zhang, Z.; Opahle, I.; Ohmer, D.; Yao, Y.; Zhang, H. High-Throughput Screening of Magnetic Antiperovskites. *Chemistry of Materials* 2018, *30* (20), 6983–6991. https://doi.org/10.1021/acs.chemmater.8b01618.
- (17) Sun, W.; Bartel, C. J.; Arca, E.; Bauers, S. R.; Matthews, B.; Orvañanos, B.; Chen, B.-R.; Toney, M. F.; Schelhas, L. T.; Tumas, W.; Tate, J.; Zakutayev, A.; Lany, S.; Holder, A. M.; Ceder, G. A Map of the Inorganic Ternary Metal Nitrides. *Nat Mater* 2019, *18* (7), 732–739. https://doi.org/10.1038/s41563-019-0396-2.
- (18) Du, Z.; Chen, X.; Hu, W.; Chuang, C.; Xie, S.; Hu, A.; Yan, W.; Kong, X.; Wu, X.; Ji, H.; Wan, L.-J. Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur Batteries. *J Am Chem Soc* 2019, *141* (9), 3977–3985. https://doi.org/10.1021/jacs.8b12973.

- Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; Attenkofer, K.; Wang, H. Isolated Ni Single Atoms in Graphene Nanosheets for High-Performance CO 2 Reduction. *Energy Environ Sci* 2018, *11* (4), 893–903. https://doi.org/10.1039/C7EE03245E.
- (20) Tian, H.; Tian, H.; Wang, S.; Chen, S.; Zhang, F.; Song, L.; Liu, H.; Liu, J.; Wang, G. High-Power Lithium–Selenium Batteries Enabled by Atomic Cobalt Electrocatalyst in Hollow Carbon Cathode. *Nat Commun* **2020**, *11* (1), 5025. https://doi.org/10.1038/s41467-020-18820-y.
- (21) Feng, J.; Chen, D.; Pikhitsa, P. V.; Jung, Y.; Yang, J.; Choi, M. Unconventional Alloys Confined in Nanoparticles: Building Blocks for New Matter. *Matter* 2020, 3 (5), 1646–1663. https://doi.org/10.1016/j.matt.2020.07.027.
- (22) Chen, C.; Wu, D.; Li, Z.; Zhang, R.; Kuai, C.; Zhao, X.; Dong, C.; Qiao, S.; Liu, H.; Du, X. Ruthenium-Based Single-Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution. *Adv Energy Mater* **2019**, 9 (20). https://doi.org/10.1002/aenm.201803913.
- Yao, Y.; Huang, Z.; Xie, P.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; Yu, D.; Zachariah, M. R.; Wang, C.; Shahbazian-Yassar, R.; Li, J.; Hu, L. Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles. *Science* (1979) **2018**, 359 (6383), 1489–1494. https://doi.org/10.1126/science.aan5412.
- Yao, Y.; Huang, Z.; Li, T.; Wang, H.; Liu, Y.; Stein, H. S.; Mao, Y.; Gao, J.; Jiao, M.; Dong, Q.; Dai, J.; Xie, P.; Xie, H.; Lacey, S. D.; Takeuchi, I.; Gregoire, J. M.; Jiang, R.; Wang, C.; Taylor, A. D.; Shahbazian-Yassar, R.; Hu, L. High-Throughput, Combinatorial Synthesis of Multimetallic Nanoclusters. *Proceedings of the National Academy of Sciences* **2020**, *117* (12), 6316–6322. https://doi.org/10.1073/pnas.1903721117.
- Moroz, N. A.; Bauer, C.; Williams, L.; Olvera, A.; Casamento, J.; Page, A. A.; Bailey, T. P.; Weiland, A.; Stoyko, S. S.; Kioupakis, E.; Uher, C.; Aitken, J. A.; Poudeu, P. F. P. Insights on the Synthesis, Crystal and Electronic Structures, and Optical and Thermoelectric Properties of Sr _{1-x}Sb _xHfSe ₃ Orthorhombic Perovskite. *Inorg Chem* 2018, *57* (12), 7402–7411. https://doi.org/10.1021/acs.inorgchem.8b01038.
- (26) Adhikari, S.; Johari, P. Photovoltaic Properties of <math> <mrow> <mi>A</Mi> <mi>B</Mi> </Mrow> <msub> <mi Mathvariant="normal">Se</Mi> <mn>3</Mn> </Msub> </Math> Chalcogenide Perovskites (<math> <mi>A</Mi> </Math> = Ca, Sr, Ba; <math> <mi>B</Mi> </Math> = Zr, Hf). Phys Rev B 2024, 109 (17), 174114. https://doi.org/10.1103/PhysRevB.109.174114.
- Li, W.; Vasenko, A. S.; Tang, J.; Prezhdo, O. V. Anharmonicity Extends Carrier Lifetimes in Lead Halide Perovskites at Elevated Temperatures. *J Phys Chem Lett* 2019, *10* (20), 6219–6226. https://doi.org/10.1021/acs.jpclett.9b02553.