Supplementary Information

High-Transparency, Weather-ResistantNanocomposite Coatings from Shear-Aligned2D Unit-Cell-Thick Perovskite for WoodenArtifact Preservation

Zhuangzhuang Li,^{†a} Ya Nan Ye,^{†a} Beibei Kang,^a Yiming Hua,^a Zhe Wang,^a Dongdong Yan,^a Huijie Zhou,^a Wenwen Yu,^a Shilei Zhu*^{a,b}

^a College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

^b College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.

†These authors contributed equally.

Table S1. The variation of resin viscosity with different PNS contents

PNS Contents (wt%)	0	1	2	3	4
Viscosity (mpa·s)	171.3	189.7	215.4	232.2	247.9

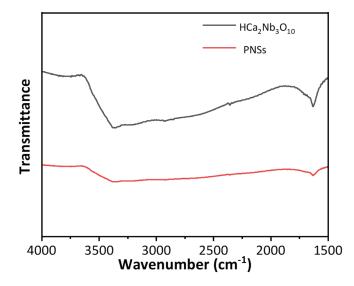
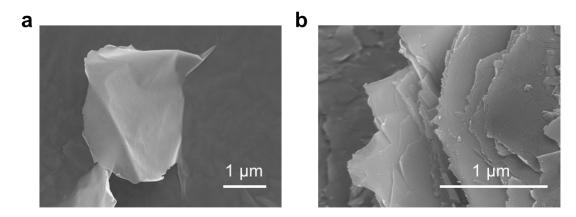
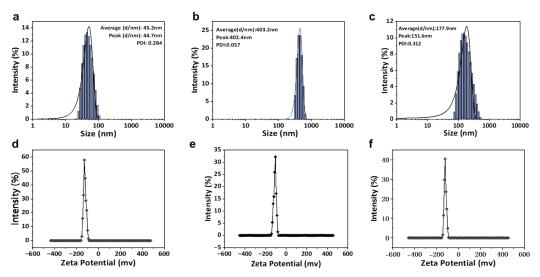
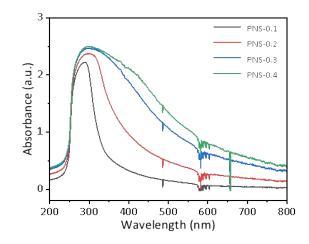
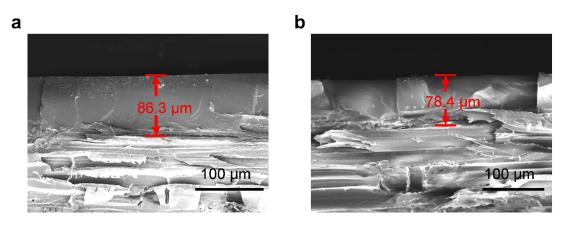


Figure S1. Fourier Transform Infrared (FTIR) spectroscopy spectra of $HCa_2Nb_3O_{10}$ and PNSs.


Figure S2. Scanning electron microscopy (SEM) images of the PNSs.

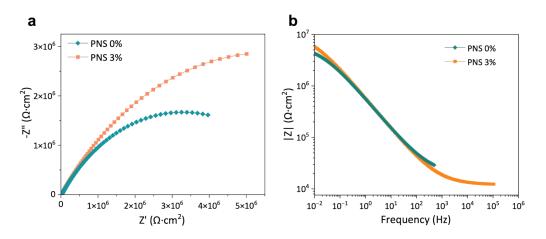

Figure S3. Dynamic Light Scattering (DLS) size distribution histogram and Zeta potential distribution diagram for AR, PNS and PNS-AR aqueous solutions with 3 wt% PNS content.

Figure S4. UV-Vis absorption spectra of PNS dispersion in water with different PNS contents.

Figure S5. SEM images of the cross-sections of wooden blocks with (a) AR and (b) PNS-AR coatings.

Figure S6. Electrochemical impedance spectroscopy (EIS) analysis of the composite coatings. (a) Nyquist plot showing the higher impedance of the PNS-AR coating compared to the AR coating. (b) Bode plot demonstrating the increased impedance modulus at low frequency for the PNS-AR coating, indicating superior electrochemical protection.