Constructing Polycrystalline Hybrid Ternary CuS/Co₃O₄ with Supported Graphitic Nitride Electrocatalyst for Bifunctional Water Splitting Reactions

Imtiaz Ahmed^a Zahir Abbas^a and Shaikh M. Mobin*,ab

^aDepartment of Chemistry, Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India.

^bCenter for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol Khandwa Road, 433552, India.

* E-mail: xray@iiti.ac.in

Sr. No	Contents	Page
1.	Instrumentations	S3
2.	Experimental Section	S3-4
3.	Table S1 PXRD Rietveld refined structural information ofCo3O4, CuS, binary composite and ternary composite system.	S4-6
4.	Fig. S1: (a-c) FESEM images of CuS pristine materials.	S6
5.	Fig. S2: (a-c) FESEM images of Co ₃ O ₄ pristine materials.	S6
6.	Fig. S3: ATR-FTIR spectra of ternary, binary and pristine Co_3O_4 , CuS and g- C_3N_4 .	S7
7.	Fig. S4. XPS survey spectra of ternary nanostructure.	S7
8.	Table S2. Mass activity results of ternary binary composite and all other pristine electrocatalyst.	S7
9.	Electrochemical surface area:	S8
10.	Fig. S5. Cyclic voltammetry curves of (a) pristine Co_3O_4 (b) pristine CuS (c) g-C ₃ N ₄ composite (d-f) are their corresponding plot of J_a and J_c against scan rate for the determination of double layer capacitance (C _{dl}) of the catalysts, respectively.	S8

11.	Fig. S6. ECSA Normalization from LSV in 1M KOH for OER.	S9
12.	Fig. S7. TOF from LSV at voltage of 1.70 V of ternary, binary, Co_3O_4 CuS and g- C_3N_4 only in 1M KOH for OER.	S9
13.	Fig. S8. CV curves of ternary, binary, Co_3O_4 , CuS and $g-C_3N_4$ in 1 M KOH (pH ~ 13.8) solution in a given potential range of 0.2 V to 0.3 V (vs RHE) at a scan rate of 40 mV/s to enumerate the active sites.	S10
14.	Table S3. Active sites $(^{\tau})$ and TOF results of ternary binary, Co ₃ O ₄ , CuS and g-C ₃ N ₄ electrocatalyst.	S10
15.	Table S4. Comparison of OER and HER activity of ternary nanostructure with some reported copper and cobalt_based catalysts in an alkaline medium and acidic medium.	S11-12
16.	Table S5. Comparison of OER and HER chrono and LSVstability of some reported copper and cobalt_based catalysts in analkaline medium and acidic medium.	S12
17.	Fig. S9: Polarization curves (LSV) plot, representing the overpotential at higher current density (100 mA/cm ²) for both (a) HER and (b) OER for the electrocatalyst.	S13
18.	Most Possible Overall HER pathway:	S13
19.	Most Possible Overall OER pathway:	S14
20.	Fig. S10: Post catalytic XRD and FESEM analysis of ternary electrocatalyst after chronoamperometric stability test in I M KOH.	S14
21.	Fig. S11: Post catalytic mapping analysis of ternary electrocatalyst after chronoamperometric stability test in I M KOH.	S15
22.	Fig. S12: Post catalytic FTIR analysis of ternary electrocatalyst after chronoamperometric stability test in I M KOH.	S 15
23.	Reference	S16

Instrumentation:

All the reagents and solvents were purchased from a commercial source without any further purification. For the Powder X-ray diffraction (PXRD) analysis Cu K α (0.154 nm) monochromatic radiation was used with a Rigaku Smart Lab X-ray diffractometer. X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Kratos Axis Ultra system, equipped with a monochromatic AlK α X-ray source. The survey spectra were measured with 80 eV pass energy and 1 eV step size whereas with the high-resolution spectra 20 eV pass energy and 100 mV step size was used. All XPS measurements were performed using the charge neutralizer. The morphologies were investigated by a Supra55 Zeiss field emission scanning electron microscope (FESEM) and high-resolution transmission electron microscopy (HR-TEM) was performed using (TEM, JEM F200) at an operating voltage of 300 kV. The attenuated total reflectanceFourier transform infrared (ATR-FTIR) spectra were recorded with a Bruker Alpha II system over the wavenumber range of 4000–400 cm⁻¹. All electrochemical measurements were performed with Metrohm Autolab (PGSTAT-204N) single channel potentiostat/galvanostat using NOVA 2.1.5 setup software.

EXPERIMENTAL SECTION

Materials: Copper (II) chloride (CuCl₂) were obtained SRL, Cobalt (II) nitrate hexahydrate $(Co(NO_3)_2.6H_2O)$, ethanol (AR grade 99.9%), potassium hydroxide (AR grade KOH), Thiourea (CS(NH₂)₂) and melamine (C₃N₃(NH₂)₃) were obtained from Spectrochem. 5% NafionTM 117 solution IrO₂ and Pt/C and was bought from Sigma-Aldrich. Carbon cloth was purchased from Global-Tech India Pvt Ltd. for electrode preparation. The compounds were kept in a desiccated location and utilized without subsequent purification.

Synthesis Procedure of CuS: Synthesis of pristine CuS was carried out by preparing two different suspensions, 0.51g (3.69 mmol.) in 10 mL of ethylene glycol in a glass beaker with stirring to form solution I and thiourea 0.5 g (6.57 mmol.) in 15 ml DI H₂O in another beaker to form solution II. Solution II was slowly dropped into solution I with continuous stirring and kept the reaction mixture under continuous stirring for 30 min at 40 °C. The entire reaction mixture was transferred into a Teflon-lined stainless-steel autoclave and subjected to a hydrothermal reaction at 160°C for 12 hours. After the reaction, the resulting product was washed multiple times with deionized water (DI H₂O) and ethanol to remove any impurities. Finally, the obtained sample was kept on drying for overnight at 70 °C and then used for further

binary and ternary material synthesis. The schematic representation of the synthesis procedure for the flower-shaped CuS is illustrated in Scheme 1.

Synthesis procedure of Co_3O_4 : To prepare Co_3O_4 , 727.5 mg of cobalt nitrate hexahydrate $(Co(NO_3)_2.6H_2O)$ and 180 mg of $CO(NH_2)_2$ was dissolved in 30 ml of distilled water under continuous magnetic stirring until a transparent wine color solution was formed. Then the reaction mixture was transferred in Teflon line-autoclave to treat it hydrothermally at 180 °C for 12 h. Subsequently the autoclave was cooled down to room temperature and the black precipitate was collected and washed with distilled water and ethanol respectively to remove the remnant and finally the sample was dried at 90 °C for further use. Finally it was calcinated at 300 °C for 3h to obtained the crystalline Co_3O_4 .

Synthesis of $CuS@Co_3O_4$: The binary system was synthesized using a procedure similar to that used for the preparation of the ternary material, with the exception of the omission of g- C_3N_4 .

Synthesis procedure of $g-C_3N_4$: $g-C_3N_4$ was prepared via a simple calcination method. Melamine ($C_3N_3(NH_2)_3$) was calcinated by muffled furnace at 620 °C. The yellow powder obtained was used for further studies and research purpose.

Table S1 PXRD Rietveld refined structural information of Co₃O₄, CuS, binary composite and ternary composite system.

Sample	Phases	Atom	Wyckoff	Posit	ional paran	neters	Occupan	Bond length (Å)	
Compositio n	phase fractio n	8	site	X	у	Z	_ cy		
		Co1	8a	0.00000	0.00000	0.00000	1.00	(Co1–O1) = 1.933	
Co ₃ O ₄	100%	01	32e	0.38810	0.38810	0.38810	1.00	(Co2–O1) = 1.92	
	cubic	Co2	16d	0.62500	0.62500	0.62500	1.00		
	phase	Cry	Crystal system = Cubic, lattice parameters: $a = b = c = 8.08013$ A; $\alpha = \beta = \gamma = 90^{\circ}$; cell volume = 527.539 Å ³ , space group = Fd-3m (SG#227). R-Factors: $R_p = 1.22$, $R_{wp} = 1.53$, $R_{exp} = 1.51$, $R_{Bragg} = 2.63$, $R_F = 3.63$; $\chi^2 = 1.02$						
		Cul	4f	0.33333	0.66667	0.10666	1.00	(Cu1-S1) = 2.32220	
	93.4%	Cu2	2d	0.33333	0.66667	0.75000	1.00	(Cu1-S2) = 2.3484	
	нехадо	S1	4e	0.00000	0.00000	0.05965	1.00	(Cu2-S2) = 2.19076	

	nal	S2	2c	0.33333	0.66667	0.25000	1.00					
	CuS											
	phase	Crysta	l system = He	vagonal latt	ice naramete	ars: a = b = 3	79449 Å c	$= 1638446$ Å $\cdot \alpha = \beta =$				
		90° y = 120° cell volume = 204 288 Å ³ space group = P ₂ /mmc (SG #1194)										
		90° , $\gamma = 120^{\circ}$; cell volume = 204.288 Å ^o , space group = P_{63} /mine (SG #1194). R-Factors: $R_p = 1.73$, $R_{wp} = 2.31$, $R_{exp} = 1.82$, $R_{Bragg} = 1.25$, $R_F = 1.14$; $\chi^2 = 1.60$										
CuS		Cul	8c	0.00000	0.00000	0.00000	1.00	(Cu1-S1) = 2.39996				
		Cu2	32f	0.25000	0.25000	0.25000	0.496	(Cu2-S1) = 2.26436				
	6.6%	S1	4a	0.32527	0.32527	0.32527	0.38					
	Cubic											
	Cu _{1.8} S	Crys	stal system = 0	Cubic, lattice	e parameters	a = b = c = c	5.54206 Å;	$\alpha = \beta = \gamma = 90^{\circ}; \text{ cell}$				
	phase		vc	olume = 170.	221 Å ³ , spac	e group = Fn	n-3m (SG#2	225).				
				R-F	actors: Rp	$= 0.56 R_{\rm p} =$	2 31					
	K-Factors: $K_{Bragg} = 0.56$, $K_F = 2.31$											
		Crys	stal system = 0	Cubic, lattice	e parameters	a = b = c = b	8.08710 Å;	$\alpha = \beta = \gamma = 90^{\circ}; \text{ cell}$				
	46.4%		volume = 528.907 Å ³ , space group = Fd-3m (SG#227).									
	cubic	R-Factors: $R_p = 1.41$, $R_{wp} = 1.77$, $R_{exp} = 1.30$, $\chi^2 = 1.84$,										
	Co ₃ O ₄											
	phase	$R_{Bragg} = 42.4, R_F = 51.9.$										
	44.5%	Crystal system = Hexagonal, lattice parameters: $a = b = 3.79297$ Å, $c = 16.36940$ Å; $\alpha = \beta =$										
	Hexago	90°, $\gamma = 120^{\circ}$; cell volume = 203.950 Å ³ , space group = P ₆₃ /mmc (SG #1194).										
1.	nal			DE	ators: D	- 28 8 P -	27.5					
binary	CuS			K-1'a	COIS. R _{Bragg}	$-20.0, R_{\rm F}$ –	21.3.					
composite	phase											
system	9.1%	Crys	stal system = 0	Cubic, lattice	e parameters	a = b = c = c	5.54412 Å;	$\alpha = \beta = \gamma = 90^{\circ}; \text{ cell}$				
	Cubic		volume = 170.411 Å^3 , space group = Fm-3m (SG#225).									
	Cu _{1.8} S			DE	(D	22 5 D	70.1					
	phase			K-F	actors: R _{Bragg}	$_{\rm g}$ = 23.5, $R_{\rm F}$ =	- /0.1					
		Crys	stal system = 0	Cubic, lattice	e parameters	a = b = c = b	3.12143 A;	$\alpha = \beta = \gamma = 90^{\circ}; \text{ cell}$				
	39.4%		V	plume = 535.	671 A ³ , spac	ce group = Fo	l-3m (SG#2	27).				
	cubic		R-	-Factors: R _p	= 1.39, R _{wp} =	= 1.77, R _{exp} =	1.73, $\chi^2 = 1$.05,				
	Co_3O_4			1	1							
CuS/CooQ.@	pnase				$R_{Bragg} = 5.1$	$8, R_F = 5.92.$						
g-C ₃ N ₄												
composite system												

37.6%	Crystal system = Hexagonal, lattice parameters: $a = b = 3.79642$ Å, $c = 16.41605$ Å; $\alpha = \beta =$
Hexago	90°, $\gamma = 120^{\circ}$; cell volume = 204.902 Å ³ , space group = P ₆₃ /mmc (SG #1194).
nal	
CuS	R-Factors: $R_{Bragg} = 4.39$, $R_F = 4.97$
phase	
23%	Crystal system = Cubic, lattice parameters: $a = b = c = 5.54669 \text{ Å}$; $\alpha = \beta = \gamma = 90^{\circ}$; cell
Cubic	volume = 170.648 Å^3 , space group = Fm-3m (SG#225).
Cu _{1.8} S	
phase	K-Factors: $R_{\text{Bragg}} = 5.28$, $R_{\text{F}} = 13.2$

Fig. S1: (a-c) FESEM images of CuS pristine materials.

Fig. S2: (a-c) FESEM images of Co₃O₄ pristine materials.

Fig. S3: ATR-FTIR spectra of ternary, binary and pristine Co₃O₄, CuS and g-C₃N₄.

Fig. S4. XPS survey spectra of CuS/Co₃O₄@g-C₃N₄ ternary nanostructure.

 Table S2. Mass activity results of ternary binary composite and all other pristine

 electrocatalyst.

S.No	Mass Activity								
	Electrocatalysts	OER	HER						
1	Bare CC	8.99	4.9						
2	g-C ₃ N ₄	22.24	5.21						
3	CuS	38.79	9.35						
4	Co ₃ O ₄	78.52	37.42						
5	CuS/Co ₃ O ₄	234.12	86.78						
6	$CuS/Co_3O_4@g-C_3N_4$	462.56	165.43						

Electrochemical surface area (ECSA):

The electrochemically active surface area (ECSA) is proportional to the electrochemical double layer capacitance (Cdl) and the ECSA can be calculated using the following equation.

$$ECSA = C_{dl}/C_s....(2)$$

Where Cs is the specific capacitance of flat working electrode and its value is 40 μ F cm⁻² ECSA for the flat electrode.¹,² The double-layer capacitance (C_{dl}) is calculated from the slope of anodic current density (Ja), cathodic current density (Jc) vs scan rate plot. The slope is directly proportion to the C_{dl} value.

Fig. S5. Cyclic voltammetry curves of (a) pristine Co_3O_4 (b) pristine CuS (c) g-C₃N₄ composite (d-f) are their corresponding plot of J_a and J_c against scan rate for the determination of double layer capacitance (C_{dl}) of the catalysts, respectively.

Fig. S6. ECSA Normalization from LSV in 1M KOH for OER.

Turnover Frequency (TOF) of all the electrocatalysts by using the following relation:

$$TOF = \frac{J \times NA}{n \times F \times \tau} \quad \dots \dots \quad (3)$$

Complete details are of catalysts of active sites (τ) TOF and are presented in textual part of manuscript and in Table S3 Fig. S7 & S8:

Fig. S7. TOF from LSV at voltage of 1.70 V (470 mV) and current density (in A/cm²) of $CuS/Co_3O_4@g-C_3N_4$, CuS/Co_3O_4 , Co_3O_4 , CuS and $g-C_3N_4$ only in 1M KOH for OER.

Active sites (τ) was calculated by the following equation:

Fig. S8. CV curves of CuS/Co₃O₄@g-C₃N₄, CuS/Co₃O₄, Co₃O₄ CuS and g-C₃N₄ in 1 M KOH (pH ~ 13.8) solution in a given potential range of 0.2 V to 0.3 V (vs RHE) at a scan rate of 40 mV/s to enumerate the active sites.

S.No	Mass Activity								
	Electrocatalysts	Active sites (τ)	TOF						
1	CuS/Co ₃ O ₄ @g-C ₃ N ₄	6.944×10^{15}	0.3438 s ⁻¹						
2	CuS/Co ₃ O ₄	5.854×10^{15}	0.1611 s ⁻¹						
3	Co ₃ O ₄	4.228×10^{15}	0.1446 s ⁻¹						
4	CuS	1.859×10^{15}	0.1101 s ⁻¹						
5	g-C ₃ N ₄	1.865×10^{15}	0.0511 s ⁻¹						

Table S3. Active sites (7) and TOF results of $CuS/Co_3O_4@g-C_3N_4$ CuS/Co₃O₄, Co₃O₄ CuS and g-C₃N₄ electrocatalyst.

Table S4. Comparison of OER and HER activity of $CuS/Co_3O_4@g-C_3N_4$ ternary nanostructure with some reported copper and cobalt_based catalysts in an alkaline medium and acidic medium.

Catalyst Method of Over		Overpotential Tafel slope (mV) (mV dec ⁻¹)		Electrolyte used		Reference		
	synthesis	at 10	mA/cm ²	('	,			
	~	OER	HER	OER	HER	OER	HER	
Co ₃ O ₄ /NC/C	Thermal Decomp.		40		43 mV dec ⁻¹		1M KOH	3
CuFeS2/rGO		176	153	216	150	1M KOH	1M KOH	4
Co ₃ O ₄ /C	Hydrother mal Approach	290		70		0.1 M KOH		5
g-C ₃ N ₄ /CeO ₂ /Fe ₃ O ₄	Hydrother mal Approach	400	310			1M KOH	1M KOH	6
Ni@CuS/SGCN		380		178		1M KOH	0.5 M H ₂ SO ₄	7
Co ₃ O ₄ @MoS ₂	Hydrother mal Approach	269	207	58	58	1М КОН	1 M KOH & 0.5M H ₂ SO ₄	8
rGO/MnO ₂ /MoS ₂	Hydrother mal Approach	208	205	73.7	76.13	1M KOH	1M KOH	9
Co ₃ O ₄ @NiO	Chemical growth method then calcination	330		101		1М КОН		10
Cu ₂ S NRs@CoS*		275	54	237	121	1М КОН	1M KOH	11
NiO@MoO3/VC	Hydrother mal Approach	280		64.5		1М КОН		12
CoTe/MnO ₂ /BN	Hydrother mal Approach	273		81		1M KOH		13
ZnO/Co ₃ O ₄	Chemical Deposition	294		49		1M KOH		14
RGO/MoS ₂ /Pd	Hydrother mal Approach	245	86	42	35.9	1М КОН	1M KOH	15
RuO ₂ /Co ₃ O ₄	Co- preciptatio n	305	89	69	91	1М КОН	1 M KOH	16
Co/Co ₃ O ₄	Hydrother		129*		44		1 M KOH	17

	mal							
	Approach							
Co ₃ O ₄ /MoO ₃ /g-	Hydrother	206	125	60	94	1M KOH	0.5 M	18
C_3N_4	mal						H_2SO_4	
	method							
Cu ₂ S/MoS ₂ /CF	Hydrother		91		41		1M	19
	mal						KOH	
	method							
CuS/Co ₃ O ₄ @g-	Hydrother	191	78	213	89	1M	0.5 M	Present
C ₃ N ₄	mal					КОН	H ₂ SO ₄	Work
	Approach							

Note: * = Overpotential at 50 mA cm⁻²

Table S5. Comparison of OER and HER chrono and LSV stability of some reported copper and cobalt based catalysts in an alkaline medium and acidic medium.

			Chronoan	nperometry		SV	
			Stability ho	Stability (Time in hours)		ization bility cles)	
S. No	Catalysts	Electrolytes (HER/OER)	HER	OER	HER	OER	References
1	Co ₃ O ₄ /NC/C	1М КОН	20 h	100 h		1 st & 2000 th	3
2	g-C ₃ N ₄ /CeO ₂ /Fe ₃ O ₄	1М КОН	14 h				6
3	rGO/MnO2/MoS2	1М КОН	12 h	12 h			9
4	Co3O4/MoO3/g- C3N4	0.5 M H ₂ SO ₄ /1M KOH	24 h	24 h	1 st & 3000 th	1 st & 3000 th	17
5	Cu2S NRs@CoS	1М КОН	36 h	36 h			11
6	NiO@MoO ₃ /VC	1М КОН		15 h		500 th	12
7	CoTe/MnO ₂ /BN	1М КОН		24 h		2500 th	13
8	Cu ₂ S/MoS ₂ /CF	1М КОН	4 h		1000 th		19
9	CuS/Co ₃ O ₄ @g-	0.5 M	40 h	60 h	1 st &	1 st &	This Work
	C ₃ N ₄	H ₂ SO ₄ /1M KOH			2000 th	2000 th	

Fig. S9: Polarization curves (LSV) plot, representing the overpotential at higher current density (100 mA/cm²) for both (a) HER and (b) OER for the electrocatalyst.

Most Possible Overall HER pathway:

HER process proceeds through three principal steps and they are called as Volmer, the Heyrovsky, and the Tafel steps, in acidic medium.²⁰⁻²³ Volmer reaction is associated with proton absorption which is a primary discharge step (Step 1). Heyrovsky step is the electrochemical desorption stage i.e., combination of a second proton with an absorbed H atom of H₂ gas (step 2) where Tafel step is a recombination step i.e., the combination of two nearby absorbed H atoms to produce H₂ gas (step 3).

$$H_{3}O^{+} + e^{-} + M \rightarrow M - H_{ads} + H_{2}O \qquad (step 1)$$

$$M - H_{ads} + H_{3}O^{+} + e^{-} \rightarrow M + H_{2} + H_{2}O \qquad (step 2)$$

$$M - H_{ads} + M - H_{ads} \rightarrow M + H_{2} \qquad (step 3)$$

Where H_{ads} represents a hydrogen atom chemically adsorbed on an active site of the catalyst surface (M). If Volmer reaction is the rate-determining step, then the Tafel slope should be 120 mV dec⁻¹, and for the Heyrovsky process and Tafel process, the Tafel slope of 40 and 30 mV dec⁻¹ should be obtained, respectively.^{23, 24} So combinations of steps, i.e., Volmer-Heyrovsky or Volmer-Tafel pathway are required to produce molecular hydrogen in a complete HER process.

Most Possible Overall OER pathway:

The most possible overall OER pathway and the overall OER pathway under basic condition is described in our revised manuscript accordingly. At initial stage, active sites are reacted with the OH⁻ anion of the alkaline medium at the catalyst surface and started to form adsorbed OH⁻ species (stage 1). Afterwards, the adsorbed OH species further react with another OH⁻ ions to generate H₂O and adsorbed atomic O* and discharge an electron (stage 2). Then, an OH⁻ anion reacts with an adsorbed O* atom to produce adsorbed OOH species (stage 3). Moreover, further reaction with extra OH⁻ anions generates adsorbed O₂ and H₂O and after that adsorbed O₂ molecules were discharged finally in the stage (stage 4). All the steps associated in the reaction mechanism have been portrayed as follows:

$$M + OH^{-} \rightarrow M - OH^{*} + e^{-}$$
 (stage 1)
 $M - OH + OH^{-} \rightarrow M - O^{*} + e^{-} + H_{2}O$ (stage 2)

$$M - 0^* + 0H^- \to M - 00H^* + e^-$$
 (stage 3)

$$M - 00H^* + 0H^- \rightarrow M + 0_2 + H_20 + e^-$$
 (stage 4)

Fig. S10: Post catalytic XRD and FESEM analysis of CuS/Co₃O₄@g-C₃N₄electrocatalyst after chronoamperometric stability test in I M KOH.

Fig. S11: Post catalytic mapping analysis of $CuS/Co_3O_4@g-C_3N_4$ electrocatalyst after chronoamperometric stability test in I M KOH.

Fig. S12: Post catalytic ATR-FTIR of $CuS/Co_3O_4@g-C_3N_4$ electrocatalyst after chronoamperometric stability test in I M KOH.

References:

- 1. T. A. Ho, C. Bae, H. Nam, E. Kim, S. Y. Lee, J. H. Park, H. Shin ACS Appl. Mater. Interfaces 2018, **10**, 12807-12815.
- Y. Li, F.-M. Li, X.-Y. Meng, S.-N. Li, J.-H. Zeng and Y. J. A. C. Chen, 2018, 8, 1913-1920.
- 3. S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu and H. Fu, *Chem. Commun.*, 2015, **51**, 8066-8069.
- 4. S. Swathi, R. Yuvakkumar, G. Ravi, M. Thambidurai, H. D. Nguyen and D. Velauthapillai, *ACS Appl. Nano Mater.*, 2023, **6**, 6538-6549.
- 5. S. A. Needham, G. Wang, K. Konstantinov, Y. Tournayre, Z. Lao and H.-K. Liu, *Electrochem. and Solid State Lett.*, 2006, **9**, A315.
- 6. J. Rashid, N. Parveen, T. u. Haq, A. Iqbal, S. H. Talib, S. U. Awan, N. Hussain and M. Zaheer, *ChemCatChem*, 2018, **10**, 5587-5592.
- 7. M. Javed, M. A. Qamar, M. Shariq, I. A. Ahmed, K. B. Alziyadi, E. Almutib, A.-N. M. Alaghaz, R. Azooz and S. K. Ali, *J. of The Electrochem. Soc.*, 2023, **170**, 116506.
- 8. J. Liu, J. Wang, B. Zhang, Y. Ruan, H. Wan, X. Ji, K. Xu, D. Zha, L. Miao and J. Jiang, *J. Mater. Chem. A*, 2018, **6**, 2067-2072.
- 9. S. Denisdon, P. Senthil Kumar, C. Boobalan and G. Rangasamy, *Langmuir*, 2024, **40**, 17753-17766.
- 10. A. QayoomMugheri, U. Aftab, M. IshaqAbro, S. R. Chaudhry, L. Amaral and Z. H. Ibupoto, *Electrochim. Acta*, 2019, **306**, 9-17.
- 11. Q. Zhou, T.-T. Li, J. Wang, F. Guo and Y.-Q. Zheng, *Electrochim.Acta*, 2019, **296**, 1035-1041.
- 12. R. Illathvalappil, L. George and S. Kurungot, *ACS Appl. Energy Mater.* 2019, **2**, 4987-4998.
- 13. P. Rani, R. Biswas, A. Dutta and P. S. Alegaonkar, *Energy & Fuels*, 2024.
- 14. L. Zhang, H. Li, B. Yang, Y. Zhou, Z. Zhang and Y. Wang, *J. Solid State Electrochem.*, 2019, **23**, 3287-3297.
- 15. A. Pandey, A. Mukherjee, S. Chakrabarty, D. Chanda and S. Basu, *ACS Appl. Mater. & Interfaces*, 2019, **11**, 42094-42103.
- 16. H. Liu, G. Xia, R. Zhang, P. Jiang, J. Chen and Q. Chen, *RSC Adv.*, 2017.
- 17. X. Yan, L. Tian, M. He and X. Chen, *Nano Lett.*, 2015, **15**, 6015-6021.
- 18. I. Ahmed, R. Biswas, R. A. Patil, K. K. Halder, H. Singh, B. Banerjee, B. Kumar, Y.-R. Ma and K. K. Haldar, *ACS Appl. Nano Mater.*, 2021, **4**, 12672-12681.
- 19. X. Wang, J. Wang, X. Zhang, Q. Tian, M. Liu, N. Cai, Y. Xue, W. Chen, W. Li and F. Yu, *ChemCatChem*, 2019, **11**, 1354-1361.
- 20. N. Pentland, J. M. Bockris and E. Sheldon, J. Electrochem. Soc., 1957, 104, 182.
- 21. M. Basu, R. Nazir, C. Mahala, P. Fageria, S. Chaudhary, S. Gangopadhyay and S. Pande, *Langmuir*, 2017, **33**, 3178-3186.
- 22. B. Conway and B. Tilak, *Electrochim. Acta*, 2002, **47**, 3571-3594.
- 23. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, *J. Am. Chem. Soc.*, 2013, **135**, 17881-17888.
- 24. T. Hu, K. Bian, G. Tai, T. Zeng, X. Wang, X. Huang, K. Xiong and K. Zhu, *The J. Phys. Chem. C*, 2016, **120**, 25843-25850.