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1. Organic synthesis  
 

 

Scheme S 1 Synthesis of aldehydes 1a,b 

5-methyl-2-hydroxybenzen-1,3-dialdehyde (1a)1. In a round bottom flask 2,6-bis(hydroxymethyl)-4-

cresol (59.5 mmol, 1 eq.) and CHCl3 (100 mL) were added. The mixture was stirred at room temperature 

until complete dissolution and activated MnO2 (1.2 mmol, 20 eq.) was added. The mixture was heated 

at 60°C until the raw material was consumed (24 h). The reaction mixture was filtered on celite, the 

solvent was evaporated, isolating an impure yellow solid. The compound was purified through 

recrystallisation MeOH/H2O. Yellow solid. Yield 90 %. m.p. 129-132°C (lit. 129-130°C2). Rf = 0.69 (AcOEt 

: Petroleum Ether = 3 : 1). 1H RMN (500 MHz, CDCl3): δ=11.45 (s, 1H, OH); 10.21 (s, 2H, CHO); 7.77 

(s, 2H, Haromatic); 2.38 (s, 3 H, CH3) ppm. 13C RMN (125 MHz, CDCl3): δ=192.2; 161.8; 138.0; 129.5; 

122.9; 20.1 ppm. 1H RMN (500 MHz, DMSO-d6): δ=11.40 (s, 1H, OH); 10.22 (s, 2H, CHO); 7.86 (s, 2H, 

Haromatic); 2.34 (s, 3 H, CH3) ppm. 

5-(tert-butyl)-2-hydroxybenzen-1,3-dialdehyde (1b)3. 4-hydroxybenzoic acid (36.2 mmol, 1 eq.), 

HMTA (hexamethylentetramine, 111.2 mmol, 4 eq.) and TFA (trifluoroacetic acid, 29 mL, 14 eq.) were 

added to a round bottom flask. The mixture was heated at 80°C until raw material was consumed. Water 

(100 mL) was added to the reaction mixture and heated at 80°C until a yellow solid formed. The mixture 

was cooled, filtered under vacuum and the precipitate was rinsed with water and dried. The compound 

was purified through column chromatography with silica gel as a stationary phase, and the mobile phase 

was a volumetric mixture of AcOEt : Petroleum Ether = 1:20. After the purification step, a straw yellow 

solid was obtained Yellow solid. Yield 57%. m.p. 108-110°C (lit. 104-105°C2). Rf = 0.68 (AcOEt : 

Petroleum Ether = 1 : 10). 1H RMN (300 MHz, CDCl3): δ=11.48 (s, 1H, OH); 10.24 (s, 2H, CHO); 7.98 

(s, 2H, Haromatic); 1.35 (s, 9 H, t-Bu) ppm. 13C RMN (75 MHz, CDCl3): δ=192.4; 161.7; 143.1; 134.7; 123.6; 

122.7; 34.3; 31.1 ppm. 1H RMN (500 MHz, DMSO-d6): δ=11.45 (s, 1H, OH); 10.25 (s, 2H, CHO); 8.09 

(s, 2H, Haromatic); 1.31 (s, 9 H, t-Bu) ppm. 

Dimethylterephthalate. Benzen-1,4-dioic acid (18.1 mmol, 1 eq.) and 90 mL MeOH were added to a 

round bottomed flask. When the acid had dissolved, SOCl2 (thionyl chloride, 15 mL, 12 eq.) was 

gradually added dropwise. The mixture was heated at 60°C. After the raw material was consumed, the 

reaction mixture was diluted with water (60 mL). The compound was extracted in ethyl ether (3 x 150 

mL). The organic phase was mixed, rinsed with saturated solution of sodium bicarbonate (600 mL), 

traces of water were removed with anhydrous magnesium sulphate and the solvent was evaporated by 

rotary evaporator, to afford the pure compound. White solid. Yield 93% (3.25 g). m.p. 142 – 145°C 

(140.72°C4, 139-141°C5). Rf = 0.78 (AcOEt : Petroleum Ether = 1 : 2). 1H RMN (500 MHz, CDCl3): 

δ=8.10 (s, 4H, Haromatic); 3.95 (s, 6 H, CH3O) ppm. 13C RMN (125 MHz, CDCl3): δ=166.3; 133.9; 129.6; 

52.4 ppm. 

1,4-Benzendihydrazide (2c).  Diethylterephthalate (1.51 mmol, 1 eq.) and MeOH (60 mL) were added 

to a round bottomed flask and the solution was heated to reflux. When the ester had dissolved in solvent, 
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hydrazine hydrate (11.5 mL, 7.5 eq.) was added. The reaction took place at reflux until the raw material 

was consumed. Over time, a white solid formed because the target compound is not soluble in reaction 

medium. The reaction mixture was filtered under reduced pressure, and the isolated precipitate was well 

rinsed with plenty of water to remove traces of hydrazine. The compound was purified through 

recrystallization from MeOH. White solid. Yield 73% (2,3 g). m.p. 320°C (decomposition; 310°C6, 

320°C7). Rf = 0.44 (MeOH : DCM = 1 : 40).1H RMN (500 MHz, DMSO-d6): δ=9.87 (s, 2H, NH); 7.86 (s, 

2H, Haromatic); 4.53 (s, 4 H, NH2) ppm.13C RMN (125 MHz, DMSO-d6): δ=165.1; 135.5; 126.9 ppm. 

Figure S 1 1H NMR spectra (fragments, 300 MHz, DMSO-d6) in time of mixture of aldehyde 1a and hydrazide 2a (5 mM) 
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Figure S 2 1H NMR spectra (500 MHz, DMSO-d6) recorded to monitor the evolution of the reaction between aldehyde 1b and 

hydrazide 2c (10 mM) performed in the NMR tube with and without acid catalyst  

without TFA – 72 h

with TFA – 0.25 h
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Figure S 3 1H NMR spectra (fragments, 500 MHz, DMSO-d6) of macrocycle 7 performed in NMR tube (bottom) and on larger 

scale and isolated (top) 
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Figure S 4 1H NMR spectra (500 MHz, DMSO-d6) recorded to monitor the evolution of the reaction between aldehyde 1c and 

hydrazide 2a performed in the NMR tube  

 

Figure S 5 1H NMR spectra (500 MHz, DMSO-d6) recorded to monitor the evolution of the reaction between aldehyde 3 and 

hydrazide 2c performed in the NMR tube  
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Figure S 6 1H NMR spectra (500 MHz, DMSO-d6) recorded to monitor the evolution of the reaction between aldehyde 3 and 

hydrazide 2b performed in the NMR tube  
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2. DFT calculation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S 7  Optimized structures of compounds 6 (A) and 7 (B). 
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Figure S 8  Experimental vs. calculated (PBE0/6-31G(d)) absorption spectrum of 7 (neutral) in DMSO. 
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Figure S 9 Experimental absorption spectrum of 7 in presence of TBAF vs. calculated (6-31+G(d)) spectrum of 7 

(monoanion) in DMSO. 
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Figure S 10 Experimental excitation spectra of 7 and calculated (PBE0/6-31+G(d)) absorption spectrum of 7 (dianion) in 

DMSO. 
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3. FTIR spectroscopy 
 

FTIR spectra of compounds 6 and 7 confirmed the presence of the hydrazone linkages. The peaks observed at ∼1650 

cm-1 and ∼1550 cm-1 were assigned to ν(C= O) and ν(C=N) vibrational modes, respectively. Additionally, stretching vibrations 

at around 1220 cm-1 are characteristic to ν(C=N) moieties. The broad absorption band visible at ∼3200 cm-1 was assigned 

to ν(OH) vibration mode. 

 

 

Figure S 11 FTIR spectra for compounds 6 (left) and 7 (right) 
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4. Thermogravimetry 
The observed weight losses could be associated with elimination of species such as adsorbed water, surface OH groups, 

solvents, or even decomposition. The two compounds present different decomposition steps and weight losses. For 

compound 7 a slight weight loss (~2%) occurs up to 100 °C, likely due to water removal. This is followed by a 10% weight 

loss up to 200 °C, attributed to residual organic solvents from synthesis. Multiple steps suggest that water and solvent 

molecules have varying binding energies within the crystal lattice. The material remains stable up to approximately 350 °C. 

Beyond this temperature, a significant weight loss (~75%) is observed, likely due to decomposition processes associated 

with an exothermic process. For compound 6 a minor weight loss (~5%) is observed up to 315 °C, likely due to water or 

solvent elimination, associated with an endothermic process. Between 315 °C and 370 °C, a further 14% weight loss 

occurs, accompanied by an exothermic process. The total mass loss (~22%) up to 500 °C indicates higher stability 

compared to compound 7, suggesting a more compact structure with stronger intermolecular interactions.  

 

 
 

Figure S 12 Thermogravimetric measurements for 6 and 7 
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5. SEM & TEM 
 

According to SEM images, compound 7 presents a layered morphology, while 6 has a texture that is much more compact 

consistent with the thermogravimetric analysis indicating higher stability. Moreover, TEM images of 7 revealed once again the 

layered morphology of this compound. 

 

 
 

Figure S 13 A. SEM images of compounds 6 (left) and 7 (right). B.  TEM images of compound 7 at different magnifications 
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6. PXRD 
For compound 7 full-range PXRD patterns display three reflections with d-spacings of 4.7 Å, 3.5 Å, and 2.1 Å. Small-

angle XRD patterns reveal additional reflections with d-spacings of 30.3 Å and 12.9 Å.  

Compound 6 exhibits higher crystallinity, with an intense peak at 13.9 Å and additional peaks at 12.1 Å, 9.1 Å, 8.1 Å, 6.7 

Å, 4.9 Å, and 3.4 Å. 

The reflections corresponding to an interlayer d-spacing of 3.5 Å (for 7) and 3.4 Å (for 6), respectively, could be assigned 

to the distance of π-π stacking and could be attributed to the intra-columnar spacing between the parallel macrocyclic 

cores, Comparing the crystallite size of the two compounds calculated using Scherer equation we could observe that 

compound 7 had a smaller crystallite size (∼35.5 Å) than compound 6 (∼67.8 Å). Using the d-spacing between two 

macrocyclic cores and the crystallite size we were able to calculate the number of stacked macrocycles. Therefore, for 

compound 7 we have ∼10 continuously stacked macrocycles, while for compound 6 there are ∼20 stacked macrocycles.  

 

 

 

Figure S 14 XRD patterns of compound 6 and 7 
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7. Absorption and emission spectroscopy  
 

To determine the molar absorptivity (ε), several dilutions were performed within the concentration range 5.10-6 – 5.10-5 M. and 

we determined for λmax = 366 nm a value of ε = 39581 L*mol-1*cm-1. 

 

Figure S 15 Linear regression for determination of the molar absorption coefficient of compound 7 

 

 

  

Figure S 16 Top: Excitation and emission spectra of compound 7 in DMSO; Bottom: Normalized absorption and excitation 

spectra of compound 7 in DMSO 
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8. Anion-complexation assays  
 

 

 

Figure S 17  UV-Vis absorption spectra of macrocycle 7 and mixture of macrocycle in presence of: blue – TBAC; red – TBAB; 

green – TBAS  
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Figure S 18  Fitting the absorbance data from UV-Vis spectra (λ=445 nm) using BindFit (http://app.supramolecular.org/bindfit; 

stoichiometry 1:1); K11=7377.03 error ± 9.8547 %; 

http://app.supramolecular.org/bindfit
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Figure S 19  Fitting fluorescence data (excitation at λ=445 nm) using BindFit (1:2): K11=77.86 ± 5.96 M-1; K12=10070.64 ± 

845.93 M-1 
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Figure S 20 1H NMR spectrum for titration of macrocycle 7 with TBAF (DMSO-d6, 500 MHz) 

 

 

Figure S 21 1H NMR spectrum for dilution of macrocycle 7 with DMSO-d6 (DMSO-d6, 500 MHz)  

 



S19 
 

 

Figure S 22 1H NMR spectrum for titration of macrocycle 7 with TBAB (DMSO-d6, 500 MHz) 

 

 

Figure S 23 1H NMR spectrum for titration of macrocycle 6 with TBAF (DMSO-d6, 500 MHz) 
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Figure S 24  Fitting NMR data using BindFit (1:1) 

 

Figure S 25 N-acylhydrazone compound in basic medium  
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Figure S 26 N-acylhydrazone compound with hydroxyl group in basic medium 
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9. HRMS  
 

 

Figure S 27 ESI (-) - HRMS spectrum of compound 6 (top: experimental; bottom: calculated) 
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Figure S 28 ESI (-) - HRMS spectrum of compound 7 (top: experimental; bottom: calculated) 

 

Figure S 29 ESI (+) - HRMS spectrum of compound 7 (top: experimental; bottom: calculated) 
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Figure S 30 ESI (+) - HRMS spectrum of compound 7 that was dissolved in DMSO, heated and immediately recorded 
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Figure S 31 ESI (+) - HRMS experiments of compound 7 in presence of tetra-n-butylammonium chloride (TBAC) 
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Figure S 32 ESI (+) - HRMS experiments of compound 7 in presence of tetra-n-butylammonium bromide (TBAB) 
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10. NMR spectra  
 

 

Figure S 33 1H NMR spectrum of compound 1a (CDCl3, 500 MHz) 
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Figure S 34 13C NMR spectrum of compound 1a (CDCl3, 125 MHz) 

 



S29 
 

 

Figure S 35 1H NMR spectrum of compound 1b (CDCl3, 500 MHz) 
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Figure S 36 13C NMR spectrum of compound 1b (CDCl3,125 MHz 
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Figure S 37 1H NMR spectrum of compound 4a (DMSO-d6, 500 MHz)  
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Figure S 38 13C NMR spectrum of compound 4a (DMSO-d6, 125 MHz) 
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Figure S 39 1H NMR spectrum of compound 4b (DMSO-d6, 500 MHz) 
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Figure S 40 13C NMR spectrum of compound 4b (DMSO-d6, 125 MHz) 
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Figure S 41 1H NMR spectrum of compound 5a (DMSO-d6, 500 MHz) 
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Figure S 42 13C NMR spectrum of compound 5a (DMSO-d6, 125 MHz) 
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Figure S 43 1H NMR spectrum of compound 5b (DMSO-d6, 500 MHz) 
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Figure S 44 13C NMR spectrum of compound 5b (DMSO-d6, 125 MHz) 
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Figure S 45 1H NMR spectrum of compound 8 (DMSO-d6, 500 MHz) 
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Figure S 46 13C NMR spectrum of compound 8 (DMSO-d6, 125 MHz) 
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Figure S 47 1H NMR spectrum of compound 2a (DMSO-d6, 500 MHz) 
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Figure S 48 13C NMR spectrum of compound 2a (DMSO-d6, 125 MHz) 



S43 
 

 

Figure S 49 1H NMR spectrum of compound 2b (DMSO-d6, 500 MHz) 
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Figure S 50 13C NMR spectrum of compound 2b (DMSO-d6, 125 MHz) 
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Figure S 51 1H NMR spectrum of compound 2c (DMSO-d6, 500 MHz) 
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Figure S 52 13C NMR spectrum of compound 2c (DMSO-d6, 125 MHz) 
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Figure S 53 1H NMR spectrum of compound 6 (DMSO-d6, 500 MHz, 5 mM, 2h) 
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Figure S 54 NOESY spectrum of compound 6 (DMSO-d6, 500 MHz, 7.5 mM) 
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Figure S 55 1H NMR spectrum of compound 7 (DMSO-d6, 500 MHz, 5 mM, 3 days) 

 

 

 

Figure S 56 13C NMR spectrum of compound 7 (DMSO-d6, 125 MHz, 5 mM, 3 days) 
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Figure S 57 NOESY spectrum of compound 7 (DMSO-d6, 500 MHz, 5 mM, 3 days) 
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