Supplementary Information (SI) for Journal of Materials Chemistry A

Single Zn Atoms Anchored in Mesoporous N-Doped Carbon Rods Derived from Metal-Organic Frameworks for Enhanced Electrocatalytic Oxygen Reduction Reaction

Mengxue Ma^{†a}, Zhuoya Pei^{†a}, Yuxin Peng^a, Rong Hua^a, Yuxing Ma^a, Weilong Wang^b, Xiaoxiang Xu^{b*}, Xuepeng Zhang^a, Haoquan Zheng^{a, c*}

^aKey Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

^bDepartment of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

[°]Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China

Correspondence Email: <u>zhenghaoquan@snnu.edu.cn; zn003504@whu.edu.cn</u>

[†]These authors contributed equally to this work.

1. Materials characterization

Scanning electron microscopy (SEM) images were recorded on a Hitachi SU8020 microscope. Transmission electron microscopy (TEM) measurements were performed by a JEOL JEM-7900F, the acceleration voltage is 200 kV. And energy dispersive X-ray spectroscopy (EDS) was used to observe the microstructure and the uniform dispersion of C, N, O, Zn in the catalyst. Aberration correction high-angle dark-filed scanning transmission electron microscope (AC HAADF-STEM) images were conducted on a Themis G2 300 microscope operated at 300 kV. Powder X-ray diffraction (PXRD) patterns were used to Bruker D8 Advance. Raman spectroscopy was performed on a HORIBA LabRAM Odyssey Raman spectrometer system (532 nm laser). X-ray photoelectron spectroscopy (XPS) spectra were recorded on Kratos Analytical Ltd AXIS ULTRA. N2 adsorption-desorption isotherm and Brunauer-Emmett-Teller (BET) surface area with a Micromeritics/ASAP 2460 instrument to detect. Zn K-edge X-ray absorption spectra (XAS) were collected by easyXAFS300 + (easyXAFs company).

2. Electrochemical measurements for ORR

All electrochemical performance evaluations were carried out on the CHI 760E electrochemical workstation, utilizing a setup with three-electrode in a 0.1 M KOH solution. The carbon rod served as the counter electrode, while the Ag/AgCl electrode was used as the reference electrode. The working electrode was either a rotating disk electrode (RDE) (5 mm, 0.196 cm²) or a rotating ring-disk electrode (RRDE) (5.61 mm, 0.247 cm²), both coated with catalyst slurry. Among the ink of catalyst included 2 mg of the sample, 333 µL of water, 166 µL of ethanol, and 10 µL of 5 % Nafion solution, and was ultrasonicated for 30 min to obtain a homogeneous solution. The above ink was transferred 20 µL by using a pipette in twice, dropped onto the electrode surface, and dried naturally at room temperature, the total load of catalyst was 0.4 mg cm⁻². Before testing, introducing Ar or O₂ into the 0.1 M KOH solution for 30 min to eliminate dissolved oxygen in the electrolyte. Cyclic voltammetry (CV) measurements

were operated in Ar- or O₂-saturated with a scan rate of 50 mV s⁻¹. Linear sweep voltammetry (LSV) measurements were performed with a scan rate of 5 mV s⁻¹ under different rotating speeds of 400 - 2025 rpm after 100 % IR compensation. The potentials of this experiment refer to reversible hydrogen electrode (RHE), $E_{RHE} = E_{Ag/AgCl} + 0.059$ pH + 0.197. The electron transfer number (*n*) was determined by RDE measurements by Koutecký-Levich (*K-L*) equation:

$$\frac{1}{j} = \frac{1}{j_1} + \frac{1}{j_k} = \frac{1}{B\omega^{1/2}} + \frac{1}{j_k}$$
$$B = 0.2nFC_0(D_0)^{2/3}v^{-1/6}$$

Where j, j_1 , j_k represent the experimentally measured, diffusion limiting and kinetic current density, respectively. Ω is the rotation speed (rotations per minute, rpm), n is the electron transfer number, F is the Faraday constant (96485 C mol⁻¹), C_0 is the bulk concentration of O₂ in 0.1 M KOH (1.2×10^{-3} M), D_0 is the diffusion coefficient of O₂ in 0.1 M KOH (1.9×10^{-5} cm² s⁻¹), and v is the kinematic viscosity (0.01 cm² s⁻¹). The n and hydrogen peroxide yield (H₂O₂ %) also can calculated by RRDE measurements by the following equations:

$$n = \frac{4 I_{\rm d}}{I_{\rm d} + \frac{I_{\rm r}}{N}}$$
$$H_2O_2 \% = \frac{200 \frac{I_{\rm r}}{N}}{I_{\rm d} + \frac{I_{\rm r}}{N}}$$

Where I_d and I_r are disk and ring current density, respectively. *N* is the collection efficiency of Pt ring (0.37).

The electrochemically active surface area (ECSA) was measured by CV at different scan rates of $20 - 100 \text{ mV s}^{-1}$ in a non-Faradaic potential (1.07 - 1.17 V). The ECSA was calculated by following equation:

$ECSA = C_{dl}/C_s$

Where C_{dl} is double-layer capacitance by measured, C_s is the specific capacitance (0.03 mF cm⁻²).

3. Zn-air battery measurements

All electrochemical performance tests of batteries were conducted on the CHI 660E electrochemical workstation. A polished round zinc plate serves as the anode of a Zn-air battery (thickness 0.25 mm, diameter 15 mm). And the gas diffusion layer (thickness 0.2 mm, $1.8 \times 1.8 \text{ cm}^2$) and the loaded catalyst layer (thickness 0.2 mm, $1.5 \times 1.5 \text{ cm}^2$) together form the cathode of the battery. The catalyst ink was prepared as follows: 2.5 mg of catalyst and 2.5 mg of RuO₂ were dispersed in 910 µL of ethanol, 50 µL of water, and 40 µL of Nafion (5 wt%), dissolved by ultrasound for 30 minutes, and 500 µL of the ink was dropped onto the surface of the loaded catalyst layer, with a catalyst loading of 2 mg cm⁻². The electrolyte was composed of a mixture of 6 M KOH and 0.2 M Zn(NO₃)₂·6H₂O. The rate capacities were evaluated by galvanostatic discharge at various current density of 2, 5, 10, 20 and 50 mA cm⁻² and back to 2 mA cm⁻². And the cycle time of each battery was 10 min during long-term charge-discharge cycle test.

4. Computational details

All density functional theory (DFT) periodic calculations were conducted using the Vienna Ab-initio Package (VASP).^{1, 2} The functional proposed by Perdew, Burke, and Emzerhof (PBE) was utilized for these calculations. Interactions were modeled using the projector augmented wave (PAW) potential, while the Kohn-Sham one-electron valence states were expanded in a plane wave basis with a cutoff energy set at 500 eV.³⁻

Regarding the balance between structural modeling accuracy and computation cost, we have constructed the model based on either pristine Zn-MCRs or NC surface. The vacuum thickness is set to the value greater than 15 Å to ensure sufficient separation between the two opposite surface effect. To optimize computational

efficiency, the Monkhorst-Pack reciprocal space integration was carried out using Gamma-centered k-points with a grid of $3 \times 3 \times 1$. The Hellmann-Feynman forces were deemed converged when was set as smaller than 0.03 eV/Å. The electronic energy was considered self-consistent if the energy change was less than 10^{-5} eV and the convergence criterion for frequency calculation is that the energy is less than 10^{-6} eV.

In this study, the Gibbs free energy was also calculated. The zero-point energy (ZPE) correction was applied using methods previously reported in the literature. During the DFT process, we determined the Gibbs free energy using the following equations:

$$G^0 = E_{\rm DFT} + ZPE - TS^0$$

Where G^0 is the Gibbs free energy, E_{DFT} is total free energy, ZPE is the vibration energy; TS^0 is the entropy change (T = 298.15 K). The ORR process proceeds via the following pathway:

$$O_2(g) + * \to OO^* \tag{1}$$

$$OO^* + H^+ + e^- \to OOH^*$$
⁽²⁾

$$OOH^* + H^+ + e^- \to O^* + H_2O(l)$$
 (3)

$$O^* + H^+ + e^- \rightarrow HO^* + O_2(g) + H^+ + e^-$$
 (4)

$$\mathrm{HO}^* + \mathrm{H}^+ + \mathrm{e}^- \to \mathrm{H}_2\mathrm{O}^* \tag{5}$$

$$\mathrm{H}_{2}\mathrm{O}^{*} \to * + \mathrm{H}_{2}\mathrm{O}\left(\mathrm{l}\right) \tag{6}$$

The Standard Hydrogen electrode (SHE) model was used to calculate the change of each elementary step (OO*, OOH*, O*, HO*, H_2O^* , *) in Gibbs free energy. The chemical potential of proton-electron pair is equal to one half of H_2 .⁶

Sample	Zn (wt %)
Zn-MCRs	6.6
Zn-CRs	7.2
MCRs	0.47
NC	5.0

Table S1. ICP-OES of the metal contents of the samples

The Zn content in both Zn-CRs and Zn-MCRs is higher than that in NC, demonstrating that the introduction of the PDA composite monomicelles layer effectively captures a portion of the Zn and successfully anchors it onto the surface of the ZIF-R.

	-		
	Zn-MCRs (m ² g ⁻¹)	NC (m ² g ⁻¹)	-
S _{BET}	616.8	543.6	-
$\mathbf{S}_{\mathrm{micro}}$	470.0	462.2	
S _{meso}	146.8	81.4	

Table S2. BET surface area of the samples

Zn-MCRs exhibit a higher specific surface area and possess more mesoporous sections $(146.8 \text{ m}^2 \text{ g}^{-1})$ compared to NC (81.4 m² g⁻¹), thereby proving the successful introduction of monomicelles.

samples	path	CN	R (Å)	σ^2 (Å ²)	$\Delta E_0 (\mathrm{eV})$	R factor
Zn foil	Zn-Zn1	6	2.65	0.0118 ± 0.0020	1 50 ± 1 50	0.0032
Zn Ion	Zn-Zn2	6	2.80	0.0243 ± 0.0074	1.50 ± 1.59	0.0052
ZnO	Zn-O	3.8 ± 0.9	1.96	0.0045 ± 0.0038	2.79 ± 3.04	0.0053
Zn-MCRs	Zn-N	3.9 ± 0.6	2.00	0.0153 ± 0.0023	-1.15 ± 1.45	0.0160

Table S3. EXAFS fitting parameters at the Zn K-edge for various samples

CN, coordination number; R, distance between absorber and backscatter atoms; σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ΔE_0 , inner potential correction; R factor indicates the goodness of fit.

Catalyst	<i>E</i> _{1/2} (vs RHE) (mV)	Reference
Zn-MCRs	873	This work
Zn-SAs/UNCNS	910	Chem Catalysis 2022, 2, 836-852
S-Zn-N-C-950	890	Adv. Funct. Mater. 2024, 34 , 2311337
Zn-B/N-C	886	Angew. Chem. Int. Ed. 2021, 60, 181-185
Zn-N ₄ -O	884	Adv. Sci. 2023, 10, 2302152
ZnNC	880	Angew. Chem. Int. Ed. 2023, 62, e202216041
ZnNC	880	Angew. Chem. 2023, 135, e202216041
Zn-N-C	873	Angew. Chew. Int. Ed. 2019, 58 , 7035
Zn-NC/GD	860	Carbon 2022, 186, 589-598
Zn-N-C	860	Chin. Chem. Lett. 2020, 31 1207-1212
ZnNC	857	Nat. Commun. 2019, 10, 2623
Zn-N-C-2	850	J. Colloid Interface Sci. 2023, 650, 934-942
Zn/NC-2	845	Inorg. Chem. 2023, 62, 16547-16553
ZnNx/BP	593	Adv. Funct. Mater. 2017, 27, 1700802

 Table S4. Performance comparison of Zn-based electrocatalysts for ORR catalysts in alkaline

Table S5. The Gibbs free energy change of the reaction in step 4 (ΔG_4) of the NC material occurring at the α -C and β -C sites

(eV)	ΔG_4
$NC-C_{\alpha}$	-1.26
$NC-C_{\beta}$	-1.21

Table S6. The Gibbs free energy change of the reaction in step 1 (ΔG_1) of the Zn-MCRs material occurring at the α -C and β -C sites

(eV)	ΔG_1
Zn-MCRs-C _a	0.84
Zn -MCRs- C_{β}	1.49

Fig. S1. SEM images of Zn-CR (a), and NC (b).

Fig. S2. SEM image of Zn-MCR.

Fig. S3. TEM images of Zn-CR.

Fig. S4. EDS spectrum of MCR.

Fig. S5. SEM image of MCR.

Fig. S6. Raman spectra of Zn-MCR, Zn-CR, and NC.

Fig. S7. N2 adsorption-desorption isotherms, and corresponding pore size distribution

curves of NC.

Fig. S8. High-resolution C1s XPS spectra of Zn-MCRs.

Fig. S10. LSV curves of Zn-MCRs at different pyrolysis temperatures of 800 °C,

900 °C, and 1000°C.

Fig. S11. LSV polarization curves of Zn-MCRs catalysts in O₂-saturated KOH before

and after adding KSCN solution.

Fig. S12. EIS plots of Zn-MCRs in 0.1 M KOH.

Fig. S13. LSV curves of Zn-MCRs by RRDE measurements.

Fig. S14. The charge difference density diagram of Zn-MCRs. (isosurface level: 0.001 e Bohr⁻³).

Fig. S15. CV curves at different scan rates of (a) Zn-MCRs, (b) Zn-CRs, and (c) NC in 0.1 M KOH.

Fig. S16. ORR polarization curves before and after 10000 CV cycles of Zn-MCRs.

Fig. S17. SEM image (a) and TEM image (b) of Zn-MCRs after ORR.

Fig. S18. EDS-mapping of Zn-MCRs after ORR.

Fig. S19. EDS spectrum of Zn-MCRs after ORR.

Fig. S20 Charge-discharge voltage difference at different times of ZABs assembled with $Zn-MCRs + RuO_2$ and $Pt/C + RuO_2$.

Fig. S21. (a) Side view and (b) top view of the optimized models of NC material and Zn-MCRs material.

Fig. S22. (a) Side view and (b) top view of the optimized structures of each ORR intermediate at the C site on the NC material.

Fig. S23. (a) Side view and (b) top view of the optimized structures of each ORR intermediate at the N site on the NC material.

Fig. S24. (a) Side view and (b) top view of the optimized structures of each ORR intermediate at the Zn site on the Zn-MCRs material.

Fig. S25. (a) Side view and (b) top view of the optimized structures of each ORR intermediate at the C site on the Zn-MCRs material.

Fig. S26. The simulated energy barrier diagram at the N and C sites of the NC model at U = 0 V.

Fig. S27. The simulated energy barrier diagram at the Zn and C sites of the Zn-MCRs

model at U = 0 V.

References

- 1 G. Kresse and J. Furthmüller. Comput. Mater. Sci., 1996, 6, 15-50.
- 2 G. Kresse and J. Furthmüller. *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865-3868.
- 4 G. Kresse and D. Joubert. *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 5 M. Engel, M. Marsman, C. Franchini and G. Kresse. *Phys. Rev. B*, 2020, **101**, 184302.
- 6 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson. *J. Phys. Chem. B*, 2004, **108**, 17886-17892.