Supplementary Information

Regulation of Anderson localization for enhancing thermoelectric properties in Mn doped AgSbSe₂ compounds

Yaqiong Zhong,^a Keke Liu,^a Shuo Chen,^a Hao Sang,^a Xili Wen,^a Qingjie Zhang,^a Jinsong Wu,^b Pierre Ferdinand Poudeu Poudeu,^d Xianli Su,^{*a} Ctirad Uher,^c Xinfeng Tang^{*a}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

^bNanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China.

^cDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States.

^dLaboratory for Emerging Energy and Electronic Materials (LE3M), Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

*Corresponding authors: suxianli@whut.edu.cn; tangxf@whut.edu.cn

Fig. S1. Rietveld refinements of AgSb_{1-x}Mn_xSe₂.

Fig. S2. (a)-(c) Back-scattered electron images and (d)-(f) energy-dispersive X-ray spectrometry elemental mappings of $AgSb_{1-x}Mn_xSe_2$.

Fig. S3. The relationship between C_p/T^3 and *T* for AgSb_{1-x}Mn_xSe₂. The Boson peak can be fitted only with the combined Debye-2Einstein model.

Fig. S4. Calculated band structure and PDOS of Ag₁₆Sb₁₆Se₃₂.

Fig. S5. Calculated band structure and PDOS of Ag₁₆Sb₁₅MnSe₃₂. (a)-(b) Spin-up, and (c)-(d) Spin-down.

Fig. S6. Low temperature-dependent Seebeck coefficients (α) of pristine AgSbSe₂ and 2% Mn doped AgSbSe₂.

Fig. S7. Resistivity (ρ) versus *T* plots of the samples AgSb_{1-x}Mn_xSe₂.

Parameters	<i>x</i> =0	<i>x</i> =0.004	<i>x</i> =0.006	<i>x</i> =0.008	<i>x</i> =0.012	<i>x</i> =0.02
γ (mJ mol ⁻¹ K ⁻²)	2.65	6.18	4.79	9.38	15.46	29.67
<i>b</i> (mJ mol ⁻¹ K ⁻⁴) A ₁	1.2	1.29	1.18	1.2	0.92	0.62
	1.23	1.56	1.25	1.8	2.28	3.9
$\theta_{\mathrm{E1}}\left(\mathrm{K} ight)$	25.69	23.8	25.85	26.63	29.01	30.96
A_2	12.22	16.5	12.8	14.79	16.82	23.59
$ heta_{\mathrm{E2}}\left(\mathrm{K} ight)$	51.07	51.46	51.1	52.81	57.01	62.03

Table S1. Low temperature heat capacity parameters of $AgSb_{1-x}Mn_xSe_2$. Here, γ is the Sommerfeld constant, *b* is the Debye lattice term, A_i and θ_{Ei} are the amplitude and the Einstein temperature of the *i*th Einstein oscillator mode.

Table S2. Basic parameters of the $\kappa_F \lambda$ versus *T* for AgSbSe₂

<i>T</i> (K)	$\sigma \left(\Omega^{-1} \text{ m}^{-1} \right)$	$n_{\rm H} (10^{18} {\rm cm}^{-3})$	$\mu_{\rm w}({\rm cm}^2~{\rm v}^{-1}~{\rm s}^{-1})$	$\kappa_{ m F}\lambda$
40	0.02	0.625	0.02	0.000125
60	0.614	3.37	0.11	0.00218
100	10.346	6.10	1.06	0.03
150	44.26	12	2.3	0.1029
300	224	18	7.3	0.45

Table S3. Basic parameters of the $\kappa_F \lambda$ versus *T* for AgSb_{0.99}Mn_{0.01}Se₂

<i>T</i> (K)	$\sigma \left(\Omega^{\text{-1}} \text{ m}^{\text{-1}} \right)$	$n_{\rm H} (10^{18}{\rm cm}^{-3})$	$\mu_{\rm w}({\rm cm}^2~{\rm v}^{-1}~{\rm s}^{-1})$	$\kappa_{ m F}\lambda$
14	0.66	9.4	0.00443	0.0007728
20	6.5	2.4	0.2065	0.01199
47	7.24	0.3	1.4731	0.0267
70	25	0.58	2.6694	0.07389
97	91	1.35	4.2032	0.20323
120	131	2.02	4.0501	0.2556
154	172	2.43	4.4230	0.3159
300	3015	3.7	50.89	4.8

Parameters	<i>x</i> =0	<i>x</i> =0.004	<i>x</i> =0.006	<i>x</i> =0.008	<i>x</i> =0.012	<i>x</i> =0.02
$\sigma_{300K} ({ m S}{ m m}^{-1})$	250	3823	2044	4350	5916	8246
$N(E_{\rm F})_{Cp}~({\rm m}^{-3}~{\rm J}^{-1})$	1.28×10 ⁴⁵	2.99×10 ⁴⁵	2.32×10 ⁴⁵	4.54×10 ⁴⁵	7.5×10 ⁴⁵	1.44×10 ⁴⁶

Table S4. Summary of the physical parameters of AgSb_{1-x}Mn_xSe₂