Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

1	Sulfur element achieves rapid and stable migration of Li ⁺ in oxide cathode
2	Lijuan Hou ^a , Qi Liu ^{a,c} *, Daobin Mu ^a , Li Li ^{a,b,c} , Feng Wu ^{a,b,c} , Renjie Chen ^{a,b,c} *
3	^a Beijing Key Laboratory of Environment Science and Engineering, School of Material
4	Science and Engineering, Beijing Institute of Technology, 100081, PR China
5	^b Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, PR
6	China
7	^c Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, PR China
8 9	* Corresponding authors: liuqi985@bit.edu.cn, chenrj@bit.edu.cn

1 Experimental

2 Materials synthesis

Firstly, the Ni_{0.90}Co_{0.05}Mn_{0.05}(OH)₂ precursor material was obtained through 3 coprecipitation method. Then the mixture of LiOH, Ni_{0.90}Co_{0.05}Mn_{0.05}(OH)₂, (CH₃COO)₃Al, 4 TiO₂ and Al₂(SO₄)₃ was weighed according to the molar ratio of 1.08: 1: x: y: z, and put into a 5 mortar with anhydrous ethanol for dispersion, the dried homogeneous powder sample was 6 obtained by grinding in the mortar under an infrared lamp for about 30 min. Finally, the 7 mixed powder was placed in a tube furnace under oxygen atmosphere for segmental 8 calcination. The first stage was held at 500 °C for 5 h, the second stage was held at 700 °C for 9 10 h, where the heating rate was 5 °C min⁻¹, the oxygen airflow rate was 200 cubic foot per 10 minute, and the cooling rate was 2 °C min⁻¹, and finally the calcination process was 11 completed by dropping to room temperature, the calcined powder samples were collected and 12 labeled as NCM (x=0, y=0, z=0), A-NCM (x=0.02, y=0, z=0), T-NCM (x=0, y=0.02, z=0), 13 AT-NCM (x=0.01, y=0.01, z=0), ATS-NCM (x=0, y=0.01, z=0.005) respectively. 14

15 Materials characterizations

The crystalline phases of the NCM, A-NCM, T-NCM, AT-NCM and ATS-NCM 16 powders were performed by X-ray diffraction (XRD) using Cu Karadiation (X'pert PRO, 17 PANalytical). The chemical composition of ATS-NCM was identified by inductively coupled 18 plasma (ICP, OPIMA 8300, PerkinElmer). The surface information of the materials was 19 characterized by X-ray photoelectron spectroscopy (XPS; Thermo Escalab 250Xi, USA). The 20 microstructure and morphology of the materials were measured by a field-emission scanning 21 electron microscopy (FESEM) (Regulus 8230) and energy dispersive spectrometer (EDS) 22 mapping. The cross-sectional SEM samples of particles were prepared by a focused ion beam 23 (FIB) technique (FEI Helios Nano Lab 450). The C 1s peak of a hydrocarbon located at 284.8 24 eV Binding Energy was act as calibration. Transmission electron microscopy (TEM) and 25 high-resolution transmission electron microscopy (HRTEM) tests were conducted using a 26 JEM-2100F transmission electron microscope. Atomic force microscopy (AFM) 27 28 characterization was performed using a Bruker Dimensions ICON with a nano mirror V controller. Over 1000 points across the entire region was select to calculate the average 29 Young's modulus within a specific range. Differential Scanning Calorimetry (DSC, TA 30

Q2000) was tested using delithiated electrode material charged to 4.6 V at a heating rate of 5
 °C min⁻¹ in an N₂ atmosphere within the temperature range of 100 to 300 °C, encapsulating 5
 mg of the sample in a high-pressure stainless steel crucible and add approximately 50 wt%
 electrolyte.

5 Electrochemical measurements

CR2025 coin-type half-cells (or full battery) were employed to assess the 6 electrochemical performances of the cathode materials. The homogeneous cathode slurry was 7 obtained by the active materials, super P (as conductive) and polyvinylidene fluoride (PVDF, 8 as binder) with an 8:1:1 wt ratio in N-methyl-1, 2-pyrrolidone (NMP) solvent. The cathode 9 slurry was coated on the Al foil current collector and then casted into a diameter 11 mm tablet 10 electrode with an active material mass loading of 2.5 ± 0.15 mg cm⁻². The argon-filled 11 glovebox (H₂O < 0.1 ppm, O_2 < 0.1 ppm) was used to assemble the cells with Celgard 2400 12 as the separator, Li metal (graphite electrode with the active material mass loading of 2.5 \pm 13 0.15 mg cm⁻² in full battery) as the counter electrode, and 1 M LiPF₆ in ethyl 14 carbonate/diethylene carbonate/dimetyl carbonate (EC/DEC/DMC = 1:1:1 in volume) as the 15 electrolyte solution, respectively. Galvanostatic charge/discharge tests within the voltage 16 range of 3.0-4.6 V at 30 ± 1 °C (Land CT2001A for coin-type cell) in the constant 17 environmental chamber. For the current rate, the grams refer to the cathode active material for 18 19 all coin-type half-cell and full-cell measurements. The cyclic voltammetry (CV) tests were performed in CHI660E electrochemical workstation with sweep rate of 0.1 mV s⁻¹ and 20 voltage window of 3.0-4.6 V. Electrochemical impedance spectroscopy (EIS, frequency 21 range: 100,000-0.1 Hz, 3.0 V) was performed on a CHI6081D electrochemical system (Chen 22 Hua). 23

24 In-situ XRD

In-situ XRD cell was employed with a Be window for X-ray penetration, the Al window acts as the current collector of the electrode. The fabrication process of the electrode for the in-situ XRD (BRUCKER D8 ADVANCE) measurement is same as that of the half-cell. The average loading of the electrode is approximately 4 mg cm⁻². The in-situ cell was aging for 24 h after assembled in glove box and charged/discharged at a rate of 0.05C. During the charging/discharging process, XRD measurement was repeated from 10° -90° with 20 min per 1 cycle.

2 Operando differential electrochemical mass spectrometry (DEMS)

The operation of DEMS is combined with GCD and CV measurements, consisting of a commercial quadrupole mass spectrometer (Hiden Analytical, model: HPR 40) and a Swagelok type DEMS cell (ECC Cell), with two glued capillary tubes used to purify the gas inlet and outlet. The flow rate of the purging gas is 0.5mL min-1. During the charging and discharging process, high-purity Ar is used as the working gas. In order to quantify the release of oxygen and other gases, a known constant Ar flow rate is used as the carrier gas. DEMS batteries are electrochemically controlled using a LAND cycle meter with a current density of 0.1C.

2 Figure S1 EDS mapping elemental analysis of ATS-NCM sample.

2 Figure S2 The CV for the first three cycles of NCM, AT-NCM and ATS-NCM electrodes.

3 AT-NCM and ATS-NCM cathodes.

2 Figure S5 (a) a-lattice, (b) c-lattice and (c) volume parameter change rate of NCM, AT-NCM

3 and ATS-NCM electrodes.

2 Figure S6 The DEMS curves of NCM and ATS-NCM electrodes during the initial cycle.3

2 Figure S7 S 2p state for the ATS-NCM sample after cycling.

Element	Line type	Apparent concentration	k ratio	Wt%	Wt%/Sigma	At%	Standard sample label
0	k-line	33.03	0.11116	18.69	0.26	45.56	SiO ₂
Ni	k-line	80.47	0.80472	73.17	0.30	48.61	Ni
Co	k-line	5.04	0.05036	4.76	0.17	3.15	Co
Mn	k-line	3.23	0.03228	2.50	0.10	1.77	Mn
Al	k-line	0.14	0.00098	0.16	0.05	0.23	Al_2O_3
Ti	k-line	0.56	0.00564	0.51	0.07	0.41	Ti
S	k-line	0.24	0.00207	0.22	0.06	0.27	FeS ₂
Total	/	/	/	100.00	/	100.00	/

1 Table S1 EDS testing of element concentration in cross-section

3			
	Matherials	$ m R_{f}(\Omega)$	$R_{ct}\left(\Omega ight)$
	NCM	4.26	49.54
	AT-NCM	3.79	42.07
	ATS-NCM	2.26	37.56
. —			

1 Table S2 Comparison of calculated resistance of pure NCM, AT-NCM and ATS-NCM

2 electrodes.

1 Table S3 The molar ratio of each element in the before and after cycling ATS-NCM

ATS-NCM	Ni (%)	Co (%)	Mn (%)	Al (%)	Ti (%)	S (%)
Before cycling	88.8	5.1	3.3	0.6	0.8	1.4
After cycling	88.7	5.4	3.6	0.4	0.7	1.2

2 samples obtained from ICP testing.