Supporting Information

Controlled Crystal Orientation and Reduced Lattice Distortion with Cystamine Dihydrochloride Spacer for Efficient and Stable 2D/3D Perovskite Solar Cells

Shunhui Liu,^a Xueying Wang,^a Yang Zhong,^{*a} Xiao Luo,^a Yikun Liu,^a Binlou Gao,^a Licheng Tan^{*a,d,} and Yiwang Chen^{*a,b,c,d}

^a College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) /Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

^b National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China

^c College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China

^d Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China

E-mail: tanlicheng@ncu.edu.cn (L. Tan); ywchen@ncu.edu.cn (Y. Chen); 352800220008@email.ncu.edu.cn (Y. Zhong)

Experimental Section

Materials and Reagents: N, N-dimethylformamide (DMF, 99.8% purity), dimethyl sulfoxide (DMSO, 99.9% purity), acetonitrile (99.8% purity), chlorobenzene (CB, 99.8% purity), 4-tertbutylpyridine (tBP) were purchased from SigmaAldrich and used as received without further purification. Lead iodide (PbI₂, 99.999%), tin (IV) oxide (SnO₂, 15% in H₂O colloidaldispersion liquid) and lithium bis(trifluoromethylsulfonyl) imide (Li-TFSI, >98%) were purchased from Alfa Asear. Cystamine dihydrochloride (CysCl, 96% purity) was purchased from Merck KGaA. Formamidinium iodide (FAI, 99.8%), methylamine iodide (MAI,99.5%) and methylamine hydrochloride (MACl, 99.5%) were purchased from Xi'an Yuri Solar Co., Ltd. Lead iodide (PbI₂,99,9985%) purity) and 2,2',7,7'-Tetrakis [N, N-di(4-methoxyphenyl) amino]-9.9'spirobifluorene (spiro-OMeTAD, 99% purity) were purchased from Advanced Election Technology Co., Ltd. Indium tin oxide (ITO) (transmission>95%) substrates were purchased from South China Science & Technology Company Limited. Unless specified, all chemicals are employed as received without further modifications after purchase.

Device Fabrication: Indium tin oxide (ITO) glass substrates were cleaned by sequential ultrasonic treatment in detergent, deionized water and isopropyl alcohol for 20 min and then dried with a nitrogen stream. Then the substrates were treated with UV-ozone for 20 min in plasma cleaner. SnO₂ colloidal solution was spin-coated on ITO at 3000 rpm for 30 s, and then annealed at 150 °C for 30 min in air. Then the substrates were treated with UV-ozone for 10min in plasma cleaner to improve the surface wetting before next step. Perovskite active layers were fabricated by two-step interdiffusion process, where 1.5 M of PbI₂ in DMF:DMSO (v/v 900/100) solvent containing CysCl additive with different concentrations (0.5, 1 and 1.5 mg/mL) was spin-coated onto SnO₂ layer and annealed at 70 °C for 1min. Then, a solution of FAI: MAI: MACl (90 mg: 6.9 mg: 9 mg in 1ml IPA) was spin-coated onto the PbI₂ at 2000 rpm for 30 s, and the perovskite precursor film was taken out from the nitrogen glove box to ambient air for thermal annealing at 150 °C for 15 min in humidity

conditions (30-40% humidity). After the substrates cooled to room temperature, the spiro-OMeTAD solution was prepared by adding 72.3 mg spiro-OMeTAD in the solvent (CB 1 mL, 4-tertbutylpyridine 28.8 μ L, Li-TFSI acetonitrile solution 17.5 μ L, 520 mg mL⁻¹). Finally, a 100 nm Ag anode was deposited by thermal evaporation (rate of 1.0 Å s⁻¹) using a metal shadow mask. The device area was 0.04 cm². All devices' measurements were carried out in drying cabinet at room temperature.

Characterizations: Keithley 2400 was used to characterize the current density-voltage (J-V) curves. The currents were measured under 100 mW·cm⁻² simulated AM 1.5 G irradiation (Abet5 Solar Simulator Sun2000). The standard silicon solar cell was corrected from NREL and the currents were detected under the solar simulator (Enli Tech, 100 mW cm⁻², AM 1.5 G irradiation). The forward scan range is from 0 V to 1.22 V and the reverse scan range is from 1.22 V to 0 V, with 20 mV for each step. The scan rate for the J-V measurement is 0.2 V/s. Devices were stored and tested in the nitrogen-filled glovebox. Scanning electron microscopy (SEM) was conducted on SU8020 scanning electron microscope operated at an acceleration voltage of 5 kV. Atomic force microscopy (AFM) images were measured by MultiMode 8- HR (Bruker) atomic force microscope. X-ray diffraction (XRD) spectra were carried out by using X-ray diffractometer (Bruker D8Discover 25). The ultraviolet-visible (UV-vis) spectra were characterized on UV-2600 spectrophotometer (Agilent Technologies Inc. Cary 5000 spectrophotometer). The Fourier-transform infrared (FTIR) spectra were conducted on Shimadzu IRAffinity-1S and Thermo Scientific Nicolet iS20. The steady-state photoluminescence (PL) spectra were recorded by fluorescence spectrophotometer (Hitachi F-7000) and time-resolved photoluminescence (TRPL) spectra were recorded by an Edinburgh instruments FLS920 spectrometer (Edinburgh Instruments Ltd.). The PL mapping images were conducted by FastFLIM Q2 (ISS Inc.). X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi) was used for binding energy and element distribution analysis. The water contact angle has been recorded at a Krüss DSA100s drop shape analyzer. External quantum efficiency (EQE) values

were measured under monochromatic illumination (Oriel Cornerstone 260 1/4 m monochromator equipped with an Oriel 70613NS QTH lamp), and the calibration of the incident light was performed using a monocrystalline silicon diode. Electrical impedance spectroscopy (EIS) of the devices was performed in a frequency range from 1 MHz to 10 MHz using Zahner electrochemical workstation at an applied bias equivalent to the open-circuit voltage of the cell under 1 sun illumination.

Fig. S1. Fourier transform infrared spectrometer (FTIR) spectra of PbI_2 film and PbI_2 film with CysCl.

Fig. S2. Schematic of preparing 2D/3D perovskite by two-step preparation process.

Fig. S3. X-ray photoelectron spectroscopy (XPS) of full scan for pure 3D perovskite and 2D/3D perovskite with CysCl.

Fig. S4. Apparent grain size distributions calculated from top-view SEM images of control and perovskite films with CysCl using the Nanomeasurer 1.2 software.

Fig. S5. Atomic force microscope (AFM) images of (**a**) pure 3D perovskite and (**b**) 2D/3D perovskite with CysCl.

Figure S6. Current-voltage (*J-V*) curves for the electron-only devices with structure of ITO/SnO₂/Perovskite (pure 3D and CysCl-incorporated 2D/3D)/spiro-OMeTAD/Ag based on the space-charge-limited-current (SCLC) model.

The trap density (*Nt*) was calculated using the following formula:

$$N_t = \frac{2\varepsilon_0 \varepsilon_r V_{TFL}}{qL^2}$$

where q denotes the elementary charge of electron, L denotes the thickness of the deposited perovskite layer, ε_0 denotes the vacuum permittivity (8.85 × 10⁻¹² F·m⁻¹), V_{TFL} is the starting voltage of the trapfilled limit area and ε_0 denotes the relative dielectric constant (46.9). The calculated trap density (N_t) for CysCl-incorporated 2D/3D perovskite is 1.26 × 10¹⁵ cm⁻³, which is lower than that of pure 3D perovskite (4.55 × 10¹⁵ cm⁻³). The results of SCLC demonstrate that the introduction of CysCl can effectively passivate defects.

Figure S7. Distribution scatter plots of PCE with different concentrations of addition.

Fig. S8. The optical images of pure 3D perovskite and 2D/3D perovskite films with Cyscl upon different exposure durations (fresh and 30 days) in air with 75±5% RH.

Table S1. The parameters of time-resolved photoluminescence measurement of pure 3D and 2D/3Dperovskite films with CysCl.

Sample	τ_1 (ns)	τ_2 (ns)	Α	B ₁	B ₂	$\tau_{ave}(ns)$
Control	61.0	136.1	388.9	3066.7	1432.0	84.9
CysCl	90.8	73.8	104.37	1556.8	5276.7	590.7

Device	$R_{ct}(\Omega)$	$R_{rec}(\Omega)$
Control	185.6	1.0×10^{4}
CysCl	121.0	$3.0 imes 10^4$

Table S2. Summary of the simulation parameters for PVSCs based on pure 3D perovskite and 2D/3D perovskite layers with CysCl.