Electronic Supporting Information (ESI)

Ultra-high ICE and long cycle stability sodium-ion battery anode: Hybrid nanostructure of dominant pyridine N-doped sisal fiber derived carbon-MoS₂

Yuan Luo¹, Yujie Wang¹, Xuenuan Li¹, Shilong Lin¹, Yingxi Qin¹, Lei Liao², Kaiyou Zhang¹, Aimiao Qin^{1*}

¹Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.

²College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China

*Corresponding author.

E-mail address: 2005032@glut.edu.cn (A.M. Qin)

 $\label{eq:stars} Fig.S1~XRD~patterns~of~MoS_2/N\text{-}TSFC~composites~prepared~at~different~conditions,\\ and~MoS_2~standard~samples.$

Fig. S2 The HRTEM image of MoS₂/TSFC.

Fig. S3 The HRTEM images of (a) MoS_2/N -TSFC-II, (b) MoS_2/N -TSFC-III and (c) MoS_2/N -TSFC-V.

Fig.S4 XPS N1s spectra of (a) MoS₂/N-TSFC-II, (b)MoS₂/N-TSFC-III, (c) MoS₂/N-TSFC-V, (d) different N configurations of samples.

Fig. S5 Cycling performance of different MoS₂/N-TSFC composites at 0.1 A g⁻¹.

Fig. S6 Comparisons of the electrochemical performance of MoS_2/N -TSFC with other reported MoS_2 -based anodes for SIBs.

Fig. S7 (a-b) GITT plots, (c-d) ${D_{Na}}^+$ values of MoS_2/TSFC, and TSFC.

Fig. S8 Atomic models of MoS₂/TSFC with different N species and binding energies (E_b) resulted from DFT calculations, (a) pyridine N+MoS₂/TSFC compound, (b) pyrrole N+MoS₂/TSFC compound, (c) graphite N+MoS₂/TSFC compound, and (d) MoS₂/TSFC compound.

Table S1 The XRD $d_{(002)}$ layer spacing parameters for samples.						
Samples	MoSe ₂ /N-TSFC-II	MoSe ₂ /N-TSFC-III	MoSe ₂ /N-TSFC	MoSe ₂ /N-TSFC-V		
d ₍₀₀₂₎ (Å)	6.33	6.37	6.58	6.50		

Samples	graphite-N (at%)	pyridine-N (at%)	Mo 3p _{3/2} (at%)
MoS ₂ /N-TSFC-II	2.42	19.48	78.11
MoS ₂ /N-TSFC-III	11.87	17.85	70.28
MoS ₂ /N-TSFC	6.29	49.34	44.37
MoS ₂ /N-TSFC-V	7.88	46.51	43.61

Table S2 The atomic content of different N species calculated from N 1s.

Samples	Pyridinic N (%)	ICE (%)	Reference
carbon@750 °C	33.08	74	[1]
NPUCS	49	75	[2]
PNHC	40.3	56.9	[3]
p-CNTs@HC- 1000	41.4	98	[4]
N-MDC	44.54	52	[5]
HNCs	65	61	[6]
NMC2	28.87	-	[7]
Co-Ni-S@NSC	48.9	76.8	[8]
NPC-900	28.6	74.9	[9]
CS-1000	65.4	-	[10]
MoS ₂ /N-TSFC	49.34	93	This work

Table S3 Comparisons of pyridinic N content (at%) with previously reported work.

T 11 010	C	4	C 1	4 1	
Table S4 Some	performance	narameters	of recently	<i>i</i> reported	materials in NIBS
		parameters		reported	

Samples	Surface area (m ² g ⁻ 1)	ICE (%)	Reference
HCC	3.733	86	[11]
CNF	24	73	[12]
Wood fiber derived hard carbon	126	72	[13]
Sucrose derived hard carbon	5.4	83	[14]
P-doped sucrose derived hard carbon	7	73	[15]
Chitosan derived hard carbon	47.6	85.9	[16]
SHCs-1500	1.6	90.5	[17]
PHC-0.2	44.31	92.2	[18]

Material	Initial reversible capacity	ICE	Reference
NPC-CNT@G	315 mAh g^{1} at 0.05 A g^{1}	43%	[19]
HCN-800	450 mAh g^{-1} at 0.1 A g^{-1}	45%	[20]
NSC2	280 mAh g^{-1} at 0.05 A g^{-1}	35.9%	[21]
HC@CNF	360 mAh g -1 at 0.025 A g $^{-1}$	60%	[22]
0.04 M-MnHC	336.8 mAh g^{-1} at 0.02 A g^{-1}	92.05%	[23]
N-CNS-1050	304.7 mAh g ⁻¹ at 0.05 A g ⁻¹	79.52%	[24]
e-HC	335.6 mAh g^{-1} at 0.03 A g^{-1}	77%	[25]
Co ₂ P@N-C@rGO	336 mAh g^{-1} at 0.05 A g^{-1}	24.9%	[26]
HCSs-CNTs	214.7 mAh g^{-1} at 0.03 A g^{-1}	33.1%	[27]
Ni ₃ Se ₄ @CoSe ₂ @C/CNT s	333 mAh g ⁻¹ at 0.1 A g ⁻¹	54.5%	[28]
N/S-HC	290 mAh g^{-1} at 0.03 A g^{-1}	66%	[29]
F-MoS ₂ @NCN-0.8	407.6 mAh g^{-1} at 0.05 A g^{-1}	70%	[30]
MoS ₂ @NSC	441 mAh g ⁻¹ at 0.1 A g ⁻¹	74.4%	[31]
MoO ₃ /MoS ₂ /NC/MXene	434 mAh g^{-1} at 0.1 A g^{-1}	59.6%	[32]
MoS ₂ /NC	435.97 mAh g^{-1} at 0.2 A g^{-1}	74.75%	[33]
MoS ₂ /N-TSFC	589.4mAh g ⁻¹ at 0.02A g ⁻¹	93.0%	This work

Table S5 Comparisons of the electrochemical performance of MoS_2/N -TSFC with reported HC-based composite material anodes.

Table S6 Comparisons of the electrochemical performance of MoS₂/N-TSFC with other reported MoS₂-based anodes for SIBs.

Samples	Current density(A g ⁻ ¹)	Reversible capacity(mAh g ⁻ ¹)	Cycles	Reference		
MoS ₂ @AMCRs	1	305	300	[34]		
F-MoS ₂ @NCN	1	256.3	300	[35]		
CC@CN@MoS2	1	265	1000	[36]		
HC@MoS2@NC	2	180	1000	[37]		
MoS ₂ @N-C	0.1	352	200	[38]		
S-BC/E- MoS ₂ @NC	0.2	371.1	200	[39]		

MoS ₂ /N-TSFC	1	125.3	3000	This work
MoS ₂ @MXene	1	354.8	1000	[47]
NS-MPC	2	155	2500	[46]
MoS ₂ nanosheets	0.02	161	100	[45]
MoS ₂ /FAC	2	117	500	[44]
PLHC-N-1000	0.2	231	1000	[43]
OPBNP	1	206.6	1000	[42]
N-C@MoS ₂	1.5	246	1000	[41]
N-HCS	1	204	1000	[40]

References

- [1] J. G. Sun, Y. Sun, J. A. Sam Oh, Q. L. Gu, W. D. Zheng, M. H. Goh, K. Y. Zeng,
 Y. Cheng, L. Lu, J. Energy Chem, 2021, 62, 497-504(s1).
- [2] S.Wu, H. D. Peng, J. L. Xu, L. Huang, Y. S. Liu, X. C. Xu, Y. X. Wu, Z. P. Sun, Carbon, 2024, 218, 118756.
- [3] H. N. He, D. Huang, Y. G. Tang, Q. Wang, X. B. Ji, H. Y. Wang, Z. P. Guo, Nano Energy, 2019, 57, 728-736.
- [4] Y. F. He, D. Liu, J. H. Jiao, Y. X. Liu, S. N. He, Y. Zhang, Q. Cheng, Y. G. Fang,
 X. L. Mo, H. G. Pan, R. B. Wu, Adv. Funct. Mater, 2024, 39, 2403144.
- [5] R. Muruganantham, Y. X. Chiang, W. R. Liu, MRS Energy & Sustainability, 2022, 9, 313-323.
- [6] S. T. Liu, J. S. Zhou, H. H. Song, Small, 2018, 14, 1703548.

- [7] N. H. Vu, H. T.T. Le, V. H. Hoang, V. D. Dao, H. T. Huu, Y. S. Jun, W. B. Im, J. Alloys Compd, 2021, 851, 156881.
- [8] Y. N. Wei, W. Bai, S. Yu, Z. R. Wang, J. L. Wang, Appl. Surf. Sci, 2022, 600, 154155.
- [9] Y. H. Ji, T. Wang, X. Yao, J. K. Gao, Y. T. Chu, J. W. Sun, H. T. Dong, J. Q. Sha, J Energy Storage, 2025, 106, 114640.
- [10] D. Wang, G. H. Du, D. Han, Q. M. Su, S. K. Ding, M. Zhang, W. Q. Zhao, B. S. Xu, Carbon, 2021, 181, 1-8.
- [11]P. Liu, Y. Li, Y. S. Hu, H. Li, L. Chen, X. Huang, J. Mater. Chem. A, 2016, 4, 13046-13052.
- [12]B. Zhang, C. M. Ghimbeu, C. Laberty, C. Vix-Guterl, J. M. Tarascon, Adv. Energy Mater., 2016. 6, 1501588.
- [13]F. Shen, H. Zhu, W. Luo, J. Wan, L. Zhou, J. Dai, B. Zhao, X. Han, K. Fu, L. Hu, ACS Appl. Mater. Interfaces, 2015, 7, 23291-23296.
- [14] W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J. J. Lee, X. Ji, ACS Appl. Mater. Interfaces, 2015, 7, 2626-2631.
- [15]Z. Li, L. Ma, T. Wesley Surta, C. Bommier, Z. Jian, Z. Xing, W. F. Stickle, M. Dolgos, K. Amine, J. Lu, T. Wu, X. Ji, ACS Energy Lett., 2016, 1, 395-401.
- [16]Y. He, P. Bai, S. Gao, Y. Xu, ACS Appl. Mater. Interfaces, 2018, 10, 41380-41388.
- [17]B. Yang, J. Wang, Y. Y. Zhu, K. M. Ji, C. Y. Wang, D. B. Ruan, Y. Y. Xia, J. Power Sources, 2021, 492, 229656.

- [18]Z. G. Liu, J. H. Zhao, H. Yao, X. X. He, H. Zhang, Y. Qiao, X. Q. Wu, L. Li, S. L. Chou, Chem. Sci., 2024, 15, 8478-8487.
- [19]C. Chen, M. Q. Wu, Z. Q. Xu, T. T. Feng, J. Yang, Z. Chen, S. Z. Wang, Y. S. Wang, J. Colloid Interface Sci, 2019, 538, 267-276.
- [20]Z. Zhang, Y. Huang, X. Li, S. Zhang, Q. X. Jia, T. H. Li, Chem. Eng. J, 2021, 421, 129827.
- [21]Q. Z. Jin, K. L. Wang, P. Y. Feng, Z. C. Zhang, S. J. Cheng, K, Energy Storage Mater, 2020, 27, 43-50.
- [22]U. Ghani, N. Iqbal, A. A. Aboalhassan, C. X. Zhou, B. W. Liu, J. H. Li, Y. Fang, T. Aftab, J. J. Gu, Q. L. Liu. Free-Standing, ACS Appl. Mater. Interfaces, 2022, 14, 47507-47516.
- [23] J. Zhao, X. X. He, W. H. Lai, Z. Yang, X. H. Liu, L. Li, Y. Qiao, Y. Xiao, L. Li, X. Wu, S. L. Chou, Adv. Energy Mater, 2023, 13, 2300444.
- [24] Y. H. Zhao, Z. Hu, C. L. Fan, P. Gao, R. S. Zhang, Z. X. Liu, J. S. Liu, J. L. Liu, Small, 2023, 19, 2303296.
- [25]D. Zhang, Y. Z. Wang, Z. M. Fang, Y. S. He, W. M. Zhang, Z. F. Ma, S. W. Kang, J. Electrochem, 2022, 169, 050543.
- [26]R. Jin, X. F. Li, Y. X. Sun, H. Shan, L. L. Fan, D. J. Li, X. L. Sun, ACS Appl. Mater, 2018, 10, 14641-14648.
- [27]L. Y. Suo, J. H. Zhu, X. Y. Shen, Y. Z. Wang, X. Han, Z. Q. Chen, Y. Li, Y. R. Liu, D. Wang, Y. W. Ma, Carbon, 2019, 151, 1-9.

- [28]H. Y. Zhu, Z. Y. Li, F. Xu, Z. X. Qin, R. Sun, C. H. Wang, S. J. Lu, Y. F. Zhang,
 H. S. Fan. ACS Appl. Mater, 2022, 611, 718-725.
- [29]H. H. Zhang, M. Y. Yang, Z. C. Xiao, K. Y. Xie, L. Shao, C. Huang, C. Y. Shu,C. X. Peng, Y. P. Wu, W. Tang, Energy Fuels, 2023, 37, 15127-15137.
- [30] J. F. Li, W. X. Gao, L. Y. Huang, Y. C. Jiang, X. T. Chang, S. B. Sun, L. K. Pan, Appl. Surf. Sci. 2022, 571, 15130.
- [31]G. S. Dong, L. X. Li, K. Zhu, J. Yan, G. L. Wang, D. X. Cao, Small, 2023, 29, 2208291.
- [32]Z. Q. Yu, Q. Wang, K. Zhu, G. L. Wang, D. X. Cao, J. Yan, Appl. Surf. Sci, 2024, 652, 159294.
- [33] F. X. Du, S. L. Liu, Y. Li, J. K. Wang, P. Zhang, Lonics, 2023, 29, 5183-5193.
- [34]Y. C. Pang, S. Y. Zhang, L. M. Liu, J. Liang, Z. J. Sun, Y. K. Wang, C. H. Xiao,D. W. Ding, S. J. Ding , J. Mater. Chem. A, 2017, 5, 17963-17972.
- [35]J. F. Li, W. X. Gao, L. Y. Huang, Y. C. Jiang, X. T. Chang, S. B. Sun, L. K. Pan, Appl. Surf. Sci, 2022, 571, 151307.
- [36] W. N. Ren, H. F. Zhang, C. Guan, C. W. Cheng, Advanced Functional Materials, 2017, 27, 1702116.
- [37]G. Q. Suo, B. G. Zhao, R. R. Mu, C. J. Lin, S. Z. Javed, X. J. Hou, X. H. Ye, Y. L. Yang, L. Zhang, J Energy Storage, 2024, 77, 109801.
- [38]Z. R. Yao, K. J. Zhu, X. Li, J. Wang, K. Yan, J. S. Liu, J. Alloys Compd, 2020, 838, 155541.

- [39]H. Huang, L. J. Zhao, Z. Q. Zheng, D. Xie, P. Liu, Y. J. Mai, F. L. Cheng, Electrochim. Acta, 2023, 461, 142626.
- [40]R. R. Gaddam, A. H. F. Niaei, M. Hankel , D. J. Searles, N. A. Kumar, X. S. Zhao, J. Mater. Chem. A, 2017, 5, 22186-2219.
- [41]H. Y. Li, G. Yu, J. Luo, G. Y. Li, W. Wang, B. H. He, Z. H. Hou, H. Yin, J. Electroanal. Chem, 2022, 922, 116715.
- [42]Y. J. Li, X. F. Zou, S. Q. Li, Y. Y. Chen, G. X. Wang, H. X. Yang, H. Tian, J. Mater. Chem. A, 2024, 12, 18324-18337.
- [43] W. Nie, H. W. Cheng, X. L. Liu, Q. C. Sun, F. Tian, W. L. Yao, S. Q. Liang, X.G. Lu, J. Zhou, J. Power Sources, 2022, 522, 230994.
- [44]Y. Ren, Z. Xu, Y. Wang, F. Lu, Y. Zhao, K. Yao, H. Fu, H. Luo, Mater Sci Eng B, 2023, 296, 116684.
- [45]G. S. Bang, K. W. Nam, J. Y. Kim, J. Shin, J. W. Choi, S. Y. Choi, ACS Appl Mater Interfaces, 2014, 6, 7084-7089.
- [46]R. Muruganantham, F. M. Wang, W. R. Liu, Electrochim. Acta, 2022, 424, 140573.
- [47]C. T. Chen, J. L. Chen, W. Yang, H. B. Zou, S. Z. Chen, J Energy Storage, 2024, 100, 113630.