SUPPORTING INFORMATION

Elucidating shape mediated drug carrier mechanics of Hematite Nanomaterials on Breast Cancer therapeutics

Kaviya Vijayalakshmi Babunagappan,^a Thilak Raj^a, Abirami Seetharaman,^a Subastri Ariraman,^a and Swathi Sudhakar, *^a

1.1 Analysis of the effect of Cis-EHNP and Cis-SHNP on MCF-7 Breast cancer cells for 48 h and 72 h

We analyzed the effect of Cis-EHNP and Cis-SHNP on MCF-7. MCF-7 cells were seeded with a density of 5000 cells/well and allowed to reach the confluent of 80 %. Then, the cells were treated with Cis-EHNP and Cis-SHNP at varying concentrations (0.1, 0.25, 0.5, 0.75, 1, and 1.25 μ M). MTT assay was performed by washing the treated cells with 1X PBS, followed by adding 100 μ L of di-methyl thiazolyl diphenyl tetrazolium reagent (MTT) and analyzed after incubating for four h.

The cell viability of Cis-EHNP treated samples decreased from $64 \pm 2 \%$, $31 \pm 4 \%$, $12 \pm 2.8 \%$, $3 \pm 0.82 \%$, $2 \pm 0.05 \%$, $2 \pm 0.004 \%$, with the increased concentration from 0.1μ M to 1.25μ M (Figure SI 1-A). Similarly, on treating the cells for 72h, a significant decrease in the cell viability compared to 48 h was observed till 0.25 μ M. Next, in the case of Cis-SHNP treated cells, the cell viability % declined from 92 % $\pm 3 \%$, $81 \% \pm 2 \%$, $68 \% \pm 3.3 \%$, $48 \% \pm 2.5 \%$, $24 \% \pm 2 \%$ and $16 \% \pm 1 \%$ at the varying concentrations. The cell viability further decreased with an increase in the incubation time to 72h. (Figure SI-1B)

Figure SI-1: MTT assay shows the effect of (A) Cis-EHNP and (B) Cis-SHNP treated MCF-7 cells at the end of 48 h and 72 h.

1.2 Effect of EHNP and SHNP in MCF-7 Cancer cells

We also tested the effects of hematite nanoparticles alone (EHNP, SHNP) on MCF-7 cancer cells (Figure SI-2) with the same procedure mentioned in section 1.1. The cell viability percentage of control, EHNP, and SHNP-treated MCF-7 cells was observed to be 100 % \pm 4 %, 99 % \pm 3 %, and 99 % \pm 3 %, respectively. T-test analysis showed that there is no significant difference between control and EHNP, SHNP-treated MCF-7 cells.

Figure SI - 2: The bar graph depicts the effect of EHNP and SHNP alone in MCF-7 breast cancer cells. Statistically analyzed using t-test p < 0.05, shows no significant difference between the control and SHNP, EHNP treated MCF-7 cells.

1.3 Size, zeta potential and SEM images of bare and cisplatin-loaded hematite nanoparticles

We performed the zeta potential analysis of cisplatin-loaded ellipsoidal and spherical hematite nanoparticles. The zeta potential values were observed to be 2.6 ± 0.87 mV and $- 23.84 \pm 2.36$ mV for Cis-EHNP and Cis-SHNP, respectively. The Cis-loaded EHNP and SHNP showed more positive zeta potential compared to bare nanomaterials. This could be due to the positive charge of cisplatin, as reported previously.^{1,2} Also, we characterized the cisplatin-loaded EHNP and SHNP using a scanning electron microscope (SEM) to visualize the morphology of drug-loaded nanoparticles and their sizes were measured using ImageJ software. (Table SI-1) SEM images show no morphological changes were observed for the Cis-EHNP and Cis-SHNP, indicating that the nanoparticles retain their morphological structure even after loading with cisplatin drug molecules.

S.No	Nanocarrier	Size (nm)	Zeta potential (mV)	Morphology
1.	Bare EHNP	252 ± 40	-17.72 ± 4.28	6.0KV 9.1mm x80.0K SE(M)
2.	Bare SHNP	208 ± 55	-46.56 ± 2.79	5.0KV 9.1mm x60.0K SE(M)
3.	Cis-EHNP	254.16 ± 29.42	2.6 ± 0.87	5.0kV 9.2mm x35.0k SE(M)

Table SI-1: Size, zeta potential, and SEM images of EHNP, SHNP, Cis-EHNP, and Cis-SHNP.

4.	Cis-SHNP	244.69 ± 42.79	- 23.84 ± 2.36	
				5.0kV 9.0mm x60.0k SE(M) 500nm

1.4 Cytotoxicity study of free cisplatin drug molecule on MCF-7 Breast cancer cells

We have also carried out the cytotoxicity for free cisplatin in the same concentration (0.001, 0.002, 0.005, 0.01, 0.02, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 5 and 10 μ M) as loaded into EHNP and SHNP on MCF-7 cell lines. We found that free cisplatin showed no cytotoxicity for concentrations less than 100 nM. The IC₅₀ value of 4 μ M was observed for free cisplatin, which was 20-fold higher than IC₅₀ value of Cis-loaded EHNP and five-fold higher than Cis-loaded SHNP. The IC₅₀ value of cisplatin alone observed in our studies is in agreement with previous studies.³

4

Figure SI-3 The graph represents the results of the MTT assay analyzed the cytotoxic effects of free cisplatin drug molecule using MCF-7 breast cancer cell lines.

References:

- 1 J. Liu, T. Gong, C. Wang, Z. Zhong and Z. Zhang, *Int. J. Pharm.*, 2007, **340**, 153–162.
- 2 M. Ghaferi, S. Amari, B. V. Mohrir, A. Raza, H. E. Shahmabadi and S. E. Alavi, *Pharmaceuticals*, 2020, **13**, 44.
- 3 M. Poodat, A. Divsalar, B. Ghalandari and R. Khavarinezhad, *J. Iran. Chem. Soc.*, 2023, **20**, 739–750.