Cu_{2-x}S Homojunction Coatings Empower Titanium Implant with Near Infrared-Triggered Antibacterial and Antifouling Properties

Fengqian Wang¹, Weicong Peng¹, Dongliang Huo¹, Jingxian Zhang¹, Suiping Deng¹, Langhuan Huang^{1,2}, Shaozao Tan^{1,2,*}

¹ Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China

² Guangdong Jianpai New Materials Co., Ltd., Foshan 528500, P. R. China

* Corresponding authors: orcid.org/0000-0002-4669-0401; E-mail addresses: tsztan@jnu.edu.cn (S. Tan).

Figure S1. SEM images of Ti, Ti-PEG and Ti-PEG-Cu_{2-x}S.

Figure S2. EDS image of the Cu_{2-x}S.

Figure S3. XRD patterns of the Cu_{2-x}S.

Figure S4. S 2p spectrum of Cu_{2-x}S.

Figure S5. Potential-dynamic polarization curves of Ti, Ti-PEG and Ti-PEG-Cu_{2-x}S.

Figure S6. The hemolytic rate of different samples.