Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Neurogenic and Angiogenic poly(N-Acryloylglycine)-co-(acrylamide)-co-(N-acryloyl-glutamate) Hydrogel: Preconditioning Effect Under Oxidative Stress and use in neuroregeneration

Kirti Wasnik^a, Prem Shankar Gupta^a, Gurmeet Singh^a, Somedutta Maity^b, Sukanya Patra ^a, Divya Pareek ^a, Sandeep Kumar^c, Vipin Rai^{d†,} Ravi Prakash^{e,} Arbind Acharya ^{c,} Pralay Maiti^e, Sudip Mukherjee^a, Yitzhak Mastai^f, Pradip Paik^{a *}

^a School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU),

Varanasi, Uttar Pradesh 221 005, India

^b School of Engineering Sciences and Technology, University of Hyderabad, Telangana State 500 046,

India

^c Department of Zoology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India

^d Department of Biochemistry, Institute of Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India

^e School of Material Science, Indian Institute of Technology, Banaras Hindu University (BHU),

Varanasi, Uttar Pradesh 221 005, India

^fDepartment of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan,

52900, Israel

ASSOCIATED CONTENT

The supporting information contains, Figure S1. (a) FTIR spectra of N-acryloylglycine, (b) N-acryloylglutamic acid, (c) poly[(N-acryloylglycine)-b-(acrylamide)] (d) poly (N-acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) polymeric hydrogel; Figure S2. (A) ¹H NMR of N-acryloylglutamate monomer and (B) ¹³C NMR of N-acryloylglycine monomer; Figure S3. (A) H1 NMR of p(NAG-Ac-NAE) hydrogel and (B) ¹³C NMR of p(NAG-Ac-NAE) nanohydrogel.; Figure S4. (a) TGA and (b) DSC of the poly (N-acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) hydrogel; Figure S5. Shows the MALDI-TOF spectrum of p(NAG-Ac-NAE) hydrogel; Figure S6. Biodegradation behaviour of [p(NAG-Ac-NAE)] without replacing media, studied in PBS (pH 7.4) and in presence of different enzymes.; Figure S7. Size distribution and zeta potential of p(NAG-Ac-NAE) hydrogel, studied in PBS (pH 7.4), Figure S8. Cell viability of HUVEC in treatment of p(NAG-b-A) Figure S9. Anti-angiogenic property of p(NAG-b-A) hydrogel. (a) Vessel area (%) vs Time, (b) Total number of junctions (%) vs Time, (c) Junction density (%) vs time and (d) Total Vessel length (%) vs time. List of abbreviations is provided in supporting file.

Figure S1. (a) FTIR spectra of N-acryloylglycine, (b) N-acryloylglutamic acid, (c) poly [(N-acryloylglycine)-b-(acrylamide)](d) poly(N-acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) co-polymeric hydrogel.

For N- acryloylglycine, FTIR performed with KBr (Figure S1(a)): 3323 cm⁻¹ (N-H (stretching), 3092 cm⁻¹ (-O-H stretching), 1716 cm⁻¹ (C=O (carbonyl) stretching), 1549 cm⁻¹ (-O-H overtone), 1653 cm⁻¹ (1st overtone of –NH), 1613 cm⁻¹ (C=C α,β -unsaturated ketone and due to the presence of of amine).

Fig. S1(b): N- acryloylglutamaic FTIR performed in KBr: 3413 cm⁻¹ (N-H (stretching)), 2912 cm⁻¹ and 1408 cm⁻¹ (-O-H stretching(hump); bending carboxylic acid), 1716 cm⁻¹ (C=O (carbonyl) stretching),

1549 cm⁻¹ (-O-H overtone), 1626 cm⁻¹ ($-NH_2$), 1613 cm⁻¹ (C=C α , β -unsaturated ketone, and due to the presence of amine).

Fig. S1(c): poly [(N-acryloyl glycine)-co-(acrylamide)-co-(N-acryloylglutamate)] nanohydrogel (p(NAG-Ac-NAE)) functional group analysis was performed through the ATR method: 3336 cm⁻¹ (N—H (stretching)), 3182 cm⁻¹ (-O-H stretching; strong broad carboxylic acid), 2912 (C—H stretching, conform the formation of polymer chain chain) 1716 cm⁻¹ (-C=O (carbonyl) stretching), 1549 cm⁻¹ (-O-H overtone), 1653 cm⁻¹ (1st overtone of -NH).

FTIR results of poly(N-Acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) hydrogel has been discussed in the main texts of the manuscript

Figure S2. (A) ¹H NMR of N-acryloylglutamate monomer and (B) ¹³C NMR of N-acryloylglycine monomer

¹H NMR spectrum chemical shifts (in ppm) (Fig. S2(a)): 12.5 δ (O–H of carboxylic acid (8th and 12th position)), 8.37 δ (N–H of 2° amines (2)), 6.13 δ (=C–H₂(13)), 6.13 δ (cis) and 5.64 δ (trans) of

(H₂C=CH₂ (13 and 12)), 6.17 (-CH (12)), 4.29 δ (-CH (3)), 1.99 δ (-C-H₂ (4a and 4b)), 2.20 δ (-C-H₂ (5a and 5b)) 3.4 δ for H₂O and 2.5 for DMSO-d₆.

¹³C NMR (500MHz, DMSO-d₆) (Figure S2 (b)): 174 and 173 ppm (-COOH (1 and 6)), 165 ppm

(O=C-NH-R (11)), 126 ppm and 132ppm (C=C (13 and 12)) and 51.66 ppm (-CH (3)), 26.67 ppm

31.14 ppm (-CH2-CH2 (4 and 5)) 40 ppm band of DMSO-d6

Figure S3. (A) ¹H NMR of p(NAG-Ac-NAE) nanohydrogel and (B) ¹³C NMR of p(NAG-Ac-NAE)) nanohydrogel.

Disappearance and shifting of bands observed in ¹H NMR and ¹³C NMR. For ¹H NMR spectrum chemical shifts (in ppm; CDCl₃ and DMSO-d₆) (Figure S3(a)): 12.5 δ (O–H of carboxylic acid, 8.9 δ (N–H of 2° amine), 7.26 δ (benzene), compound, 6.8 δ (H₂C = CH₂), 6.17 (–CH (12))

¹³C NMR (500 MHz in ppm; CDCl₃ and DMSO-d₆)) (Figure S3(b)): 44 and 34 ppm (8+2 splinted peak of 2° alkane) and 86-79 ppm (carboxylic –OH and ester)

Figure S4. High resolution HRTEM micrograph of p(NAG-Ac-NAE) Hydrogel (a) shows the porous and semi-crystalline nature of the hydrogel particles (b) electron diffraction pattern based distance between two fringes

Figure S5. (a) TGA and (b) DSC of the poly(N-acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) hydrogel.

Figure S6. MALDI-TOF spectrum of p(NAG-Ac-NAE) hydrogel

Figure S7. Biodegradation behavior of [p(NAG-Ac-NAE)] without replacing media, studied in PBS (pH 7.4) and in presence of different enzymes.

Figure S8. (a) Size distribution and (b) zeta potential of p(NAG-Ac-NAE) hydrogel, studied in PBS (pH 7.4)

Figure S9. Cell viability of HUVEC cells in treatment of p(NAG-b-A) hydrogel.

Figure S10. Anti-angiogenic property of p(NAG-b-A) hydrogel. (a) Vessel area (%) vs Time, (b) Total number of junctions (%) vs Time, (c) Junction density (%) vs time and (d) Total Vessel length (%) vs time.

ABBREVIATIONS:

p(NAG-Ac-NAE), poly (N-Acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) co-polymeric hydrogel; p(NAG-b-A), poly(N-acryloylglycine-b-acrylamide); TNBC, Triple Negative Breast Cancer; CNS, Central Nervous System; PNS, Peripheral Nervous system; TBI, Traumatic brain injury; PLGA, Poly (γ-glutamic acid); AIBN, Azobisisobutyronitrile; DVB, divinylbenzene; FTIR, Fourier transforms infrared; NMR, Nuclear magnetic resonance; HRTEM, High- resolution transmission electron microscopy;XRD, X-Ray Diffraction; TGA, thermogravimetric analysis; DSC, Differential Scanning calorimetry; SAED, Selected area (electron) diffraction; PBS, Phosphate Buffered saline; MCF7, Michigan Cancer Foundation-7; MDA-MB-231, M.D. Anderson - Metastatic Breast 231; PC12, Adrenal phaeochromocytoma; LN229, Glioblastoma cells; AO, acrydin orange; PI, propidium iodide; EtBr, ethidium bromide; NGF, Nerve growth factor; HBSS, Hanks' Balanced Salt Solution; DMEM, Dulbecco's modified Eagle medium; FBS, Fetal bovine serum; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide; BSA, Bovine serum albumin; CEA assay, Chick embryonic assay; NPCs, Neuronal progenitor cells; AD, Alzheimer's disease; PD, Parkinson disease; H₂O₂ Hydrogen peroxide AKT, three serine/threonine-specific protein kinases; VEGF, Vascular endothelial growth factor; PI3K, Phosphoinositide 3-kinases; mTOR, Mammalian target of rapamycin; FESEM, Field emission scanning electron microscopy; G", Loss modulus; G', Storage modulus; η^* , Complex viscosity; ω , Angular frequency; ANOVA, Analysis of Variance