Supporting Information

Activation of the PPARγ/NF-κB pathway by A-MPDA@Fe₃O₄@PVP via scavenging reactive oxygen species to alleviate hepatic ischemia-reperfusion injury

Dong Mo,^{af} Wei Cui,^a Linxin Chen,^a Juanjuan Meng,^a Yuting Sun,^g Kaiyong Cai,^d Jixi Zhang,^{*d} Jianrong Zhang,^{*c} Kui Wang ^{*de}, and Xiaohe Luo ^{*ab}

^a Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.

^b Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.

^c Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.

^d Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.

^e Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China.

^f State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.

^g College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.

* Corresponding authors:
E-mail: jixizhang@cqu.edu.cn(J. Zhang)
E-mail: jianrongzhang@cqu.edu.cn (J. Zhang);
E-mail: kuiwang@cqu.edu.cn (K. Wang);
E-mail: xiaoheluo@cqu.edu.cn (X. Luo).

Characterization

Transmission electron microscopy (TEM) images were performed on a JEM 2010 (JEOL, Japan) instrument at 200 kV acceleration to investigate the size, morphology and integrity of NPs. Samples were dried on carbon-coated Cu grids before characterization. The bulk and surface chemical compositions of samples were analyzed with high-angle annular dark-field imaging, scanning transmission electron microscopy (HAADF-STEM) and elemental mapping images using a JEM-6700F instrument (JEOL, Japan). Powder X-ray diffraction (XRD) measurements were obtained using a Bruker D8 (Germany) Advance X-Ray powder diffractometer (40 kV, 40 mA, CuKal radiation of $\lambda = 1.54059$ Å) with a scan speed of 2°/min and a step size of 0.02°. Nitrogen sorption isotherms were measured through an ASAP 2010 analyzer (Micrometrics, USA). XPS analysis was determined using an Axis Ultra spectrometer (Kratos, UK) with Al Ka excitation radiation at ca. 5 \times 10⁻⁹ Pa. Fourier transform infrared (FTIR) spectra were recorded on a Spectrum 100 infrared spectrophotometer (PerkinElmer, USA) at a test range of 400-4,000 cm⁻¹ with KBr pellet. UV-vis absorption was recorded on a UV-Vis spectrofluorometer (NanoDrop One, Thermo). Fluorescence spectra were recorded on a fluorescence spectrophotometer (RF-6000, Shimadzu, Japan) using a xenon lamp as an excitation source.

Antibody name	Dilution ratio	kD	Source	Brand	Catalog No.
β-actin	1:1000	41.6	Mouse	ZSGB-BIO	TA-09
Caspase-3	1:1000	35/19/17	Rabbit	Cell Signaling Technology	14220
Bax	1:500	23	Mouse	SANTA CRUZ BIOTECHNOLOGY	sc-7480
Bcl-2	1:1000	26	Rabbit	abcam	ab59348
TNF-α	1:500	17/26	Mouse	SANTA CRUZ BIOTECHNOLOGY	sc-52746
IL-6	1:500	21	Mouse	SANTA CRUZ BIOTECHNOLOGY	sc-32296
IL-1β	1:1000	31	Mouse	Cell Signaling Technology	12242S
PPARγ	1:1000	57	Rabbit	Cell Signaling Technology	24358
NF-κB	1:1000	61	Rabbit	BEIJING BIOSYNTHESIS BIOTECHNOLOGY	bs-0465R
p-NF-κB	1:1000	65	Rabbit	Cell Signaling Technology	3033S
Ι-κΒ-α	1:1000	39	Rabbit	Cell Signaling Technology	4812S
p-I-κB-α	1:1000	40	Mouse	Cell Signaling Technology	9246S
F4/80	1:1000	65-250	Rabbit	Cell Signaling Technology	70076S

 Table S1 the antibodies used in the present study.

Fig. S1. TEM image of Fe₃O₄ (a) and MPDA NPs (b), DLS size distribution (c) and Zeta potential (d) of MPDA, A-MPDA, A-MPDA@Fe₃O₄, and A-MPDA@Fe₃O₄@PVP NPs in water.

24 h. (b) DLS size distribution of A-MPDA@Fe₃O₄@PVP NPs in different dispersing solvents for 24 h.

Fig. S3. High-resolution X-ray photoelectron spectra of C1s in MPDA (a) and A-MPDA NPs (b); (c) High-resolution XPS spectra of Fe 2p in A-MPDA@Fe₃O₄@PVP.

Fig. S4. Fourier transform infrared spectroscopy (FT-IR) of Fe₃O₄, A-MPDA, and A-MPDA@Fe₃O₄ NPs.

Fig. S5. (a) scavenging efficiencies of H_2O_2 with MPDA, A-MPDA, Fe_3O_4 and A-MPDA@Fe_3O_4@PVP NPs; (b) scavenging efficiencies of H_2O_2 exposed to different concentrations of A-MPDA@Fe_3O_4@PVP NPs, respectively, and the corresponding absorbance of each system and decomposition rate of A-MPDA@Fe_3O_4@PVP NPs toward H_2O_2 (c).

Fig. S6. O2 bubbles observation of A-MPDA@Fe3O4@PVP NPs (2 mg·mL⁻¹) solution after addition of 200 mM H2O2.

Fig. S7. Representative intracellular ROS staining of untreated and different concentration of A-MPDA@Fe₃O₄@PVP NPs-treated L02 cells with H_2O_2 treatment (200 μ M). Scale bar: 300 μ m.

Fig. S8. Representative intracellular ROS staining of untreated and different concentration of A-MPDA@Fe₃O₄@PVP NPstreated L02 cells with LPS treatment (20 μg·mL⁻¹). Scale bar: 300 μm.

Fig. S9. Flow cytometry analysis of representative intracellular ROS staining of different nanoparticles -treated cells with LPS treatment.

Fig. S11 In vivo biocompatibility of A-MPDA@Fe₃O₄@PVP NPs. (a) Serum levels as part ALT, AST. n=5 per group; (b) Representative H&E staining images of the main organs at 0.5, 3, 7, and 30 days after intravenous injection of 5 mg·kg⁻¹ A-MPDA@Fe₃O₄@PVP NPs on healthy mice. Scale bar: 200 μm

Fig. S12. Change in serum ALP a) and TBIL b) levels from various groups of mice (n = 4).