Supplementary information

Porous reticular Co@Fe metal organic gel: dual-function simulated peroxidase nanozyme for both colorimetric sensing and antibacterial applications

Meng Wang; Xiaoguang Zhu; Yannan Yin; Guixia Ling *, Peng Zhang *

Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016,

China.

* Corresponding Author Tel. and Fax: +86-24-2398 6256

E-mail address: zhangpengspu@163.com (Peng Zhang), pharlab@163.com (Guixia Ling)

1. Materials

Hydrogen peroxide (H₂O₂, 30%), Cobaltous chloride (CoCl₂·6H₂O) was purchased from Macklin Biochemical Technology Co., Ltd. (Shanghai, China). 1, 3, 5-trimeric acid (H₃BTC) was purchased from j&k chemical. Ferric chloride (FeCl₃·6H₂O), 3, 3', 5, 5'-tetramethylbenzidine (TMB) were obtained from Aladdin. Citric acid (CA), Glucose, metal salts (Na⁺, K⁺, Mg²⁺, Ca²⁺, Mn²⁺, Zn²⁺, Ag⁺, Cu²⁺, Ni²⁺) and other reagents were obtained from Sinopharm Chemical Reagent Co., Ltd. (China). Deionized water was used throughout the experiment. Mueller Hinton (MH) Broth was purchased from Haibo Biotechnology Co., Ltd. Agar (powder) was purchased from KERMEL. *S. aureus* and *E. coli* were purchased from Beijing Preservation Biotechnology Co., Ltd. All chemicals and reagents were used asreceived without any further purification.

2. Characterizations and measurements

Absorbance values were recorded by SYNERGY type multi-function measuring instrument (BioTek, USA). The morphology of the synthesized materials was obtained using a Merlin Compact scanning electron microscope (SEM) (ZEISS, Germany). Fourier transform-infrared (FT-IR) spectra were recorded using a Bruker IFS55 spectrometer. X-ray diffraction (XRD) was performed on a SmartLab SE (Rigaku, Japan) instrument. Zeta potential data were determined by Nano-ZS90 laser particle size analyzer (Malvern, UK). Electron spin resonance spectrum (ESR) was determined by the Bruker EMX PLUS (Germany). X-ray photoelectron spectroscopy (XPS) was determined by Thermo Scientific K-Alpha (US).

3. Animals

SD rats (200 g) were obtained from the Experimental Animal Center of Shenyang Pharmaceutical University. All animal experiments throughout the study were approved by the ethics committee of Shenyang Pharmaceutical University, China.

4. Results

Figure S1. Physical status of Co@Fe MOG. (a) Co@Fe MOG after mixing evenly. (b) Co@Fe MOG before freeze-drying. (c) Co@Fe MOG after freeze-drying. (d) Co@Fe MOG dispersed with water.

Figure S2. Physical states of MOG prepared by different metal ion sources.

Figure S3. EDS spectrum of Co@Fe MOG showing the presence of Co, Fe, C, O, and N.

Figure S4. Spectrum of XPS full elements peak distribution.

Figure S5. Optimization of experimental conditions for Co@Fe MOG-H₂O₂-TMB system. (a) Metal ligand doping ratio (M/L). (b) Metal ratio. (c) Spectral scanning of metal doping ratio. (d) pH. (e) Temperature. (f) Reaction time.

Figure S6. Comparison of peroxidase activity and oxidase activity of Co@Fe MOG at different pH.

Table S1. Comparison of physical status of MOG from different metal ion sources.

Metal	Color	Status	Mobility	A ₆₅₂ (a.u.)
FeCl ₃ ·6H ₂ O	Yellow	suspension	Good	1.125
CoCl ₂ ·6H ₂ O	Pink	Flocculation	Poor	0.333
		precipitation		
NiCl ₂ ·6H ₂ O	Green	Flocculation	Poor	0.043
		precipitation		

$C_4H_6MnO_4\cdot 4H_2O$	White	suspension	Good	0.045
$CuSO_4 \cdot 5H_2O$	Blue	Flocculation	Poor	0.047
		precipitation		
HgN_2O_6 · H_2O	White	suspension	Poor	0.040
AgNO ₃	White	suspension	Good	0.040
$ZnSO_4 \cdot 7H_2O$	White	Flocculation	Poor	0.038
		precipitation		

Table S2. EDS elements content distribution and proportion data of Co@Fe MOG.

Element distribution							
Element	Element Line Wt% Wt% Sigma At%						
С	Κ	26.86	0.45	53.69			
Ν	Κ	3.81	0.43	6.53			
0	Κ	9.86	0.20	14.80			
Fe	Κ	33.63	0.37	14.46			
Со	Κ	25.84	0.37	10.53			

Table S3. The Zeta potential of Co MOG, Fe MOG, and Co@Fe MOG.

Sample	Zeta (mV)
Co MOG	-1.58
Fe MOG	28.53
Co@Fe MOG	25.37

Table S4. Comparison of steady-state dynamic parameters.

Materials	Substrates	$K_{m}(mM)$	V _{max} (10 ⁻⁸ Ms ⁻¹)	Refs
Co NPs	H_2O_2	1.14	1.72	1
	TMB	5.09	9.98	
Co/Fe-MOFs	H_2O_2	5.37	2.71	2
	TMB	3.51	7.63	
Citrate-Os NPs	H_2O_2	3.88	56.5	3
	TMB	0.096	41.2	
Ag@Fabric	H_2O_2	0.9	7.1	4
	TMB	0.27	13.6	
Fe ₃ O ₄ NPs	H_2O_2	154	9.78	5
	TMB	0.098	3.44	
HRP	H_2O_2	3.7	8.71	6
	TMB	0.434	10.00	
Co@Fe MOG	H_2O_2	0.72	2.87	This work

TMB	3.13	0.55
-----	------	------

Sample	Added (µM)	Determined (µM)	RSD (%)
Day1	20	17.58	2.88
	40	39.88	3.62
	80	76.96	3.16
Day2	20	13	2.37
	40	48.42	3.76
	80	85.29	3.86
Day3	20	21.13	1.64
	40	35.92	4.42
	80	80.29	4.59

Table S5. Precision determination of H_2O_2 (n=6).

 Table S6. Precision determination of CA (n=6).

Sample	Added (µM)	Determined (µM)	RSD (%)
Day1	15	7.89	3.82
	30	30.41	2.82
	50	51.42	2.61
Day2	15	12.60	1.40
	30	24.51	2.34
	50	53.34	2.41
Day3	15	13.78	1.87
	30	29.03	3.38
	50	50.42	3.47

Table S7. Determination of recovery rate of H_2O_2 in serum (n=3).

Sample	Added (µM)	Determined (µM)	RSD	Recovery (%)
			(%)	
	20	19.87	2.72	99.37
H_2O_2	40	49.45	2.68	123.64
	80	82.37	0.56	102.96

Table S8. Determination of recovery rate of CA in green tea (n=3).

Sample	Added (µM)	Determined (µM)	RSD	Recovery (%)
			(%)	
	15	12.87	0.21	85.85
CA	30	29.03	0.53	96.77
	50	50.82	0.43	101.65

Materials	Method	LOD	Linear range	Refs
		(µM)	(µM)	
GO-AuNPs	Electrochemical detection	detection 2 10-5000		7
GaN@ AuNPs	Electrochemical detection	2	10-100	8
GO-AgNPs	Electrochemical detection	7.9	100-10000	9
Au/PEDOT nanocomposite	Electrochemical detection	3.56	20-11600	10
FeNC	Colorimetric detection	4.36	10-600	11
GQDs/CuO	Colorimetric detection	0.17	0.5-10	12
N@TiO ₂ NPs	Colorimetric detection	2.5	10-300	13
Co@Fe MOG	Colorimetric detection	4.33	10-100	This work

Table S9. Comparison of different methods for detecting H_2O_2 .

 Table S10. Comparison of different methods for detecting CA.

Materials	Method	LOD (µM)	Linear range (µM)	Refs
-	Raman	1 mg/mL	2-20 mg/mL	14
	Spectroscopy			
	detection			
BaTiO ₃ /MWCNT	Electrochemical	61	100-10000	15
Composite	detection			
ZnO/CuO NCs	Electrochemical	21.78	150-1050	16
	detection			
Macrocycle-based	Fluorescence	2	0-20	17
dinuclear	and colorimetric			
foldamer	detection			
Fluorescent sensor	Fluorescence	0.1	0-5	18
(TPE-Py)	detection			
AgNPs	Colorimetric	0.21 mg/L	1-10 mg/L	19
U	detection	U	e	
Co@Fe MOG	Colorimetric	1.88	5-50	This
<u> </u>	detection			work

 Table S11. The MIC and MBC of *E.coil* and *S.aureus*.

	MIC	MBC
E.coil	512 μg/mL	1024 µg/mL
S.aureus	256 μg/mL	512 μg/mL

References

- Y. Chen, H. Cao, W. Shi, H. Liu and Y. Huang, Fe–Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing, *Chem Commun.* 2013, 49, 5013-5015.
- X. L. Zhao, J. L. Liu, F. T. Xie, T. Yang, R. Hu and Y. H. Yang, Iodideenhanced Co/Fe-MOFs nanozyme for sensitively colorimetric detection of H₂S, Spectrochim. *Acta A Mol. Biomol. Spectrosc.* 2021, 262, 120117.
- S. He, L. Yang, P. Balasubramanian, S. Li, H. Peng, Y. Kuang, H. Deng and W. Chen, Osmium nanozyme as peroxidase mimic with high performance and negligible interference of O₂, *J. Mater. Chem. A.* 2020, 8, 25226-25234.
- M. N. Karim, S. R. Anderson, S. Singh, R. Ramanathan and V. Bansal, Nanostructured silver fabric as a free-standing nanozyme for colorimetric detection of glucose in urine, *Biosens. Bioelectron.* 2018, **110**, 8-15.
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, *Nat. Nanotechnol.* 2007, 2, 577-583.
- M. Li, D. Y. Li, Z. Y. Li, R. Hu, Y. H. Yang and T. Yang, A visual peroxidase mimicking aptasensor based on Pt nanoparticles-loaded on iron metal organic gel for fumonisin B1 analysis in corn meal, *Biosens. Bioelectron.* 2022, 209, 114241.
- G. H. Jin, E. Ko, M. K. Kim, V.-K. Tran, S. E. Son, Y. Geng, W. Hur and G.H. Seong, Graphene oxide-gold nanozyme for highly sensitive electrochemical

detection of hydrogen peroxide, Sens. Actuators B Chem. 2018, 274, 201-209.

- M. R. Zhang, X. Q. Chen and G. B. Pan, Electrosynthesis of gold nanoparticles/porous GaN electrode for non-enzymatic hydrogen peroxide detection, *Sens. Actuators B Chem.* 2017, 240, 142-147.
- 9. E. Aparicio-Martínez, A. Ibarra, I. A. Estrada-Moreno, V. Osuna and R. B. Dominguez, Flexible electrochemical sensor based on laser scribed Graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection, *Sens. Actuators B Chem.* 2019, **301**, 127101.
- H. Shen, H. Liu and X. Wang, Surface construction of catalase-immobilized Au/PEDOT nanocomposite on phase-change microcapsules for enhancing electrochemical biosensing detection of hydrogen peroxide, *Appl. Surf. Sci.* 2023, 612, 155816.
- W. Lu, S. Chen, H. Zhang, J. Qiu and X. Liu, FeNC single atom nanozymes with dual enzyme-mimicking activities for colorimetric detection of hydrogen peroxide and glutathione, *J Materiomics*. 2022, 8, 1251-1259.
- L. Zhang, X. Hai, C. Xia, X.-W. Chen and J.-H. Wang, Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose, *Sens. Actuators B Chem.* 2017, 248, 374-384.
- M. Nasir, S. Rauf, N. Muhammad, M. Hasnain Nawaz, A. Anwar Chaudhry,
 M. Hamza Malik, S. Ahmad Shahid and A. Hayat, Biomimetic nitrogen doped
 titania nanoparticles as a colorimetric platform for hydrogen peroxide

detection, J Colloid Interf Sci. 2017, 505, 1147-1157.

- Z. Huang, X. Chen, Y. Li, J. Chen, J. Lin, J. Wang, J. Lei and R. Chen, Quantitative determination of citric acid in seminal plasma by using raman spectroscopy, *Appl Spectrosc.* 2013, 67, 757-760.
- S. Pitiphattharabun, N. Sato, G. Panomsuwan and O. Jongprateep, Electrocatalytic properties of a BaTiO₃/MWCNT composite for citric acid detection, *Catalysts*. 2022, 12, 49.
- 16. M. M. Rahman, M. M. Alam, A. M. Asiri, S. Chowdhury and R. S. Alruwais, Sensitive detection of citric acid in real samples based on Nafion/ZnO–CuO nanocomposites modified glassy carbon electrode by electrochemical approach, *Mater Chem Phys.* 2023, 293, 126975.
- M. M. Rhaman, M. H. Hasan, A. Alamgir, L. Xu, D. R. Powell, B. M. Wong,
 R. Tandon and M. A. Hossain, Highly selective and sensitive macrocyclebased dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water, *Sci. Rep.* 2018, 8, 286.
- C. Liu, Y. Hang, T. Jiang, J. Yang, X. Zhang and J. Hua, A light-up fluorescent probe for citrate detection based on bispyridinum amides with aggregation-induced emission feature, *Talanta*. 2018, **178**, 847-853.
- S. Zhou, L. Kong, X. Wang, T. Liang, H. Wan and P. Wang, Colorimetric detection of citric acid as the biomarker for urolithiasis based on sodium dodecylsulfate-AgNPs with a portable CD-spectrometer, *Anal. Chim. Acta.* 2022, 1191, 339178.