Table S1: Assignment of bands obtained from the FTIR spectrum of the three extracted
lignin sample.

Wavenumber	Peak assignment	Lignin		
(cm ⁻¹)		SCB	HT1	HT2
3362-3404	Hydroxyl group (O-H) stretching from aliphatic and phenolic groups	+	+	+
	C-H vibrations in methyl and methylene groups.		+	+
2918-2960	C-H stretch in alkyl groups.	+		
2841-2850	C-H vibrations in methyl and methylene groups	+	+	+
1634-1656	Conjugated C=O stretching in carbonyl groups	+	+	+
1592	C=O stretching, aromatic skeletal vibrations	-	+	+
1504 -1506	C=C-C aromatic ring stretching vibration	+	+	+
1459-1461	Asymmetric C-H deformation of methyl and methylene groups in ether bond. Characteristics of HGS lignin	+	+	+
1420	C=O stretching, aromatic skeletal vibrations	-	-	+
	C-O grouping in S unit.			
1326-1327	Condensed G and S units.	+	+	+
	O-H deformation and CH ₂ angular deformation			
1259-1266	C-O vibration in G unit	+	+	+
1221-1222	C-C, C-O and C=O stretching	-	+	+
1118-1120	C=O stretching of G units.		+	+
	Expansion and contraction of aromatic ring	+		
	C-H in plane deformation in G units.			
1021-1034	C-O deformation in primary alcohols.	+	+	+
	Symmetrical stretching in C-O-C.			
800-831	C-H deformation out of plane on all positions of H unit, at positions 2, 5, 6 of G units and positions 2, 6 of S units.	+	+	+

Table S2: Thermal analysis of SCB, HT1 and HT2 lignin.

Dook	Temperature/°C				
ТСак	HT1	HT2	SCB		
Water evaporation	58.1	54.1	52.3		
β-O-4 linkages cleavage	255.8	280.0	275.5		
Major decomposition	336.8	341.5	275.5		

Hydrogol	рН			
nyurogei	5	7.4	8	
BC 100%	0.0157	0.0013	0.0352	
BC:BLig 90:10	0.0172	0.2010	0.0142	
BC:BLig 80:20	0.0232	0.0328	0.0116	
BC:BLig 70:30	0.0146	0.1407	0.0392	
BC:BLig 60:40	0.0159	0.0195	0.1173	

Table S3: Swelling rate constant (k_s) of hydrogels in PBS at different pH.

BC: Bagasse cellulose, BLig: Bagasse lignin

Table S4: Release kinetics and release mechanism of lignin at different pH.

			Re	lease Kinet	ics		
pН	Cel-Lig Hydrogel	Zero order	First order	Higuchi	Korsmeyer- Peppas		Drug Release mechanism
		R ²	R ²	R ²	R ²	n	
5	BC:Blig 90:10	0.2807	0.2834	0.4491	0.637	0.05754	
	BC:Blig 80:20	0.2734	0.3025	0.4419	0.7967	0.0522	Quasi-Fickian
	BC:Blig 70:30	0.2822	0.3098	0.4512	0.6857	0.05769	diffusion
	BC:Blig 60:40	0.2184	0.2572	0.3673	0.6919	0.03593	
7.4	BC:Blig 90:10	0.6829	0.4934	0.8767	0.9297	0.9071	
	BC:Blig 80:20	0.7079	0.4971	0.8953	0.94	0.728	Non-Fickian diffusion
	BC:Blig 70:30	0.7092	0.5181	0.895	0.9395	0.9373	
	BC:Blig 60:40	0.7359	0.5427	0.9043	0.9508	1.031	Super case II transport
8	BC:Blig 90:10	0.4658	0.5914	0.6389	0.7972	0.1017	
	BC:Blig 80:20	0.5045	0.6581	0.683	0.9282	0.1048	Quasi-Fickian
	BC:Blig 70:30	0.4982	0.6581	0.6782	0.9592	0.1026	diffusion
	BC:Blig 60:40	0.4152	0.5639	0.5993	0.9266	0.0857	

BC: Bagasse cellulose, BLig: Bagasse lignin

Figure S1: SEM images of SCB cellulose (A-B) and SCB cellulose following an acid hydrolysis (C-D).

Figure S2: (A) FTIR spectrum of SCB cellulose and (B) Outcome of the SCB cellulose thermal analysis, where the left graph illustrates the TGA and DTG curves and the right graph represents the DSC curve.

Figure S3: TGA (A) and DTG (B) curves of extracted lignin samples.

Figure S4: DSC curves of SCB, HT1 and HT2 lignin samples, where (A) without cooling and (B) without cooling.

Figure S5: Graphical representation of the best-suited swelling kinetics at different pH, where BC: bagasse cellulose, Blig: bagasse lignin.