Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

4D printed nanoengineered super bioactive hydrogel scaffold with programmable deformation for potential bifurcated vascular channel construction

Amit Nain,^{a,*} Akshat Joshi,^b Souvik Debnath,^a Saswat Chodhury,^c Jobin Thomas,^d Jitendra Satija,^d Chih-Ching Huang,^{ef} Kaushik Chatterjee^{a,c,*}

^aDepartment of Material Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India ^bTerasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA ^cDepartment of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India ^dCentre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India ^eDepartment of Bioscience and Biotechnology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan ^fSchool of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan

*Corresponding author (s): <u>amitnain@iisc.a.cin</u> (A.N.) & <u>kchatterjee@iisc.ac.in</u> (K.C.)

Fig. S1. The ¹H-NMR spectra of Alg and CAlg at a concentration of 50 mg mL⁻¹ in D₂O at 298 K. Inset in CAlg is the spectra from 6.5–9.0 ppm.

Fig. S2: (A) UV-visible absorption and (B) photoluminescence spectra of alginate before (Alg) and after (CAlg) heating.

Fig. S3: Swelling behavior of CAlg/Alg:MC hydrogel (CAlg=0-5wt.%) prepared using (A) 3:9 and (B) 4:6 composition in DI water.

Fig. S4: Degradation behavior of CAlg/Alg:MC hydrogels (CAlg=2.5wt.%) in phosphate-buffered saline.

Fig. S5: Stress-strain curve of pristine Alg:MC and nanoengineered CAlg/Alg:MC hydrogel under uniaxial tensile force at a force rate of 0.1 N mm⁻¹.

Fig. S6: Disc-shaped (diameter 10 mm and thickness 0.25 mm) 3D-printed CAlg/Alg:MC hydrogel (CAlg=0-5wt.%) immersed in 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) solution for 1 h. Other conditions are the same as in Figure 3B.

Fig. S7: The absorbance of Folin-Ciocâlteu (FC) reagent (0.0125 N) at 765 nm incubated with CAlg/Alg:MC (CAlg=0-5wt.%) for 1 h, in the presence of Na₂CO₃ (0.1 M). Data are presented as mean \pm SD (n = 3).

Fig. S8: Estimation of (A) nitrite (absorbance at 540 nm) and (B) DCF fluorescence intensity (excitation/emission wavelength; 490/530 nm) in RAW264.7 macrophages incubated in the absence and presence of CAlg/Alg:MC (CAlg=0-5wt.%) in 5% CO₂ at 37 °C for 24 h using Griese reagent and DCFH-DA assay, respectively. Data are presented as mean \pm SD (n = 3).

Fig. S9: Concentrations of pro-inflammatory cytokines (IL-6 and IL-8) in the RAW264.7 macrophages incubated in the absence and presence of CAlg/Alg:MC (CAlg=0-5wt.%) in 5% CO₂ at 37 °C for 24 h and 36 h were determined using ELISA. Data are presented as mean \pm SD (n = 3).

Fig. S10: Concentrations of (A) pro-inflammatory cytokines, (A-a) TNF- α , (A-b) IL-1 β , (A-c) IL-18, and (A-d) IFN- γ and (E) anti-inflammatory cytokines, (B-a) IL-13 and (B-b) IL-10 in the RAW264.7 macrophages incubated in the absence and presence of CAlg/Alg:MC (CAlg=0-5wt.%) in 5% CO₂ at 37 °C for 24 h were determined using ELISA. Data are presented as mean \pm SD (n = 3).

Fig. S11: FEA simulations of tubular geometries showing different stripe angles and subsequent effects of stripe angle (0°, 45° and 90°) on corresponding deformations determined computationally.

Fig. S12: G-codes of different tubular geometries and subsequent experimental validation of the effect of stripe angle $(0^{\circ}, 45^{\circ}, \text{ and } 90^{\circ})$ on corresponding deformations. The scale bar is 4 mm.

Fig. S13: Experimental validation of (A) hollow rectangle and (B) plus-shaped geometries. The G-codes were created based on predictive computational designs and the subsequent effect of stripe angles (0^o, 45^o, and 90^o) on shaped deformation. Scale bars in (A) and (B) are 10 mm and 7.5 mm, respectively.

Fig. S14: 3D representation of FEA simulations of T-shaped deformations.