## **Supporting Information**

## Extracellular matrix mimetic supramolecular hydrogels reinforced with covalent crosslinked mesoporous silica nanoparticles

Aygül Zengin<sup>#</sup>, Shazad Hafeez<sup>#</sup>, Pamela Habibovic, Matthew Baker, and Sabine van Rijt<sup>\*</sup>

<sup>1</sup>Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

*<sup>#</sup>authors contributed equally to this work* 

\* Corresponding author: Sabine van Rijt: <u>s.vanrijt@maastrichtuniversity.nl</u>



Fig. S1: Characterization of the synthesized MSN-OHs. (a) TEM imaging of MSN-OH (Scale bar: 50 nm);
(b) SEM imaging of MSN-OH (Scale bar: 1 μM): (c) Hydrodynamic size and zeta potential of MSN-OHs.





Table S1: Weight average (Mw), number average (Mn), and polydispersity (D) of the starting material (PEG 20K) and the final NBTA macromonomer.

| Sample name | Mw (Daltons) | Mn (Daltons) | Polydispersity (Đ) |
|-------------|--------------|--------------|--------------------|
| PEG 20K     | 35368        | 31747        | 1.11               |
| NBTA        | 47607        | 45583        | 1.04               |



**Fig. S3** The storage modulus of NBTA-MSN<sub>0.5</sub>, NBTA-MSN<sub>1</sub>, and NBTA-MSN<sub>2</sub> hydrogels before UV light exposure where MSNs act as nanofillers (NF) and after UV light exposure as allowing MSNs to crosslink (NC)



**Fig. S4** *In situ* photorheological characterization of NBTA-MSN-CaP<sub>1</sub> supramolecular nanocomposites. (a) Time sweep test of NBTA-MSN- CaP<sub>1</sub>; (b) Frequency sweep test of NBTA-MSN- CaP<sub>1</sub>; (c) Strain sweep test of NBTA-MSN-CaP<sub>1</sub>



Fig. S5 Frequency sweep of NBTA-MSN $_{0.5}$  supramolecular nanocomposite hydrogel before crosslinking. The frequency sweep test showed a typical viscoelastic behavior.



Fig. S6. Injectability of NBTA-MSN1 nanocomposite hydrogels through the 19-Gauge syringe needle



**Fig. S7** Viability of encapsulated MG63 cells inside NBTA-MSN<sub>0.5</sub>, NBTA-MSN<sub>1</sub> and NBTA-MSN<sub>2</sub> hydrogels at day 1. The representative images of encapsulated cells stained with calcein AM (Green = live cells) and ethidium homodimer (EthD-1, red = dead cells). Scale bar: 200  $\mu$ m



**Fig. S8** Viability of encapsulated MG63 cells inside NBTA-MSN<sub>0.5</sub>, NBTA-MSN<sub>1</sub> and NBTA-MSN<sub>2</sub> hydrogels at day 4. The representative images of encapsulated cells stained with calcein AM (Green = live cells) and ethidium homodimer (EthD-1, red = dead cells). Scale bar: 200  $\mu$ m



Fig. S9 Metabolic activity of MG63 cells encapsulated NBTA-MSN<sub>0.5</sub>, NBTA-MSN<sub>1</sub>, NBTA-MSN<sub>2</sub> hydrogels during 4 days incubation in cell culture media. The data are presented as the mean  $\pm$  SD for 3 replicates. Two-way ANOVA followed by Turkey's multiple comparison test was used, \* P; \*p =0.296, \*\*=0.0067



**Fig. S10** In vitro mineralization of NBTA-MSN<sub>1</sub> and NBTA-MSN-CaP<sub>1</sub> hydrogels in m-SBF buffer for 1 day and 3 days. (a) SEM image of freeze-dried NBTA-MSN<sub>1</sub> hydrogels after 1 day (left) and 3 days (right) of incubation in m-SBF buffer. (b) SEM images of freeze-dried NBTA-MSN-CaP<sub>1</sub> hydrogels after 1 day (left) and 3 days (right) of incubation in m-SBF buffer. (c) EDX analysis of Ca and P ions within freeze-dried NBTA-MSN<sub>1</sub> and NBTA-MSN-CaP<sub>1</sub> hydrogels (n=7). Scale bar for SEM images: 100µm on the left and 10 µm on the right. The data are presented as the mean  $\pm$  SD for 7 sample areas. Two-way ANOVA followed by Turkey's multiple comparison test was used, \* P; \*\*\*p =0.002, \*\*\*\*p<0.0001



**Fig. S11.** Photographs of NBTA-MSN<sub>1</sub> and NBTA-MSN-CaP<sub>1</sub> nanocomposites (a) before SBF incubation, (b) after 1 day of incubation, and (c) 3 days of incubation in SBF buffer.