Supplementary Material

Coaxial bioprinting of stentable and endothelialized human coronary artery-sized in vitro model

Ashfaq Ahmad ^{a,b}, Seon-Jin Kim ^c, Yun-Jin Jeong ^d, Muhammad Soban Khan ^e, Jinsoo Park ^e, Dong-Weon Lee ^e, Changho Lee ^{f,g}, Yeong-Jin Choi ^{h,*}, and Hee-Gyeong Yi ^{a,b,*}

a Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.

b Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University

c School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and

Technology (POSTECH), Pohang 37666, Republic of Korea.

d Department of Automatic System, Chosun College of Science & Technology, Gwangju, 61453, Republic of Korea

e Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

f Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju,

61186, Republic of Korea

g Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 58128, Republic of Korea

h Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea

*Co-corresponding authors: Hee-Gyeong Yi: <u>hgyi@jnu.ac.kr</u>, Yeong-Jin Choi: jinchoi@kims.re.kr

Figure S1. Change in diameter of gel disc due to water uptake. a) Representative Images at before and after 72 hours of media immersion. b) Quantification of change in disc diameter due to water uptake.

Figure S2. Schematic of the gravity-driven (pumpless) flow platform and WSS values obtained from CFD simulation at varying tilt angles of rocker.

Movie S1: Stentable performance of tubular construct.