Dopamine sensing by fluorescent carbon nanoparticles synthetized by artichoke

extract

Roberta Puglisi,¹ Laura Maria Mancuso,¹ Rossella Santonocito,¹ Antonino Gulino,^{1,2} Valentina Oliveri,¹ Roberta Ruffino,¹ Giovanni Li Destri,¹ Vera Muccilli,¹ Nunzio Cardullo,¹ Nunzio Tuccitto,¹ Andrea Pappalardo,^{1,2} Gianfranco Sfuncia,³ Giuseppe Nicotra,³ Manuel Petroselli,⁴ Francesco Pappalardo,⁵ Vincenzo Zaccaria⁵ and Giuseppe Trusso Sfrazzetto^{1,2,*}

¹ Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

² INSTM Udr of Catania, Catania 95125, Italy

³ Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII,

n. 5, Zona Industriale, Catania, 1-95121 Italy

⁴ Institute of Chemical Research of Catalonia (ICIQ), Av. Palsos Catalans 16, Tarragona, 43007, Spain ⁵ R&D Department, Bionap S.r.l., 95032 Belpasso, CT, Italy

Figure S1. Al Kα excited XPS of the CNPs in the N 1s binding energy region.

Figure S2. Al K α excited XPS of the CNPs in the Mn 2p binding energy region.

Figure S3. Al K α excited XPS of the CNPs in the Fe 2p binding energy region.

Figure S4. Al K α excited XPS of the CNPs in the Co 2p binding energy region.

Figure S5. FT-IR spectrum of CNPs_ART

Figure S6 HypSpec output of the Fulorescence titration data of CNPs_ART (0.05mg/mL in MilliQ water) upon progressive addition of DA ($0-12\mu$ M).

Figure S7. ¹H NMR titration of dopamine: a) DA 1mM in D_2O ; b) DA 1mM in $D_2O + CNPs_ART$ 0.0625mg/mL; c) DA 1mM in $D_2O + CNPs_ART$ 0.125mg/mL; d) DA 1mM in $D_2O + CNPs_ART$ 0.187mg/mL; e) DA 1mM in $D_2O + CNPs_ART$ 0.250mg/mL.

Figure S8. FT-IR spectra of DA (green line) and DA@CNPs_ART (blue line).

Figure S9: Schematic representation of the investigated system (functionalized CNPs with catechol units), taking in account the distances found in the XPS and TEM analyses.

Figure S10: Structure of the most stable HG complex between functionalized CNPs and dopamine (DA) calculated at B3LYP/6-31G(d,p) level of theory in gas phase. Hydrogen bonds (A-F) in the host-guest complex are marked in red. Complexation energy ($E_{complex}$) and HBs length are also reported.

Table S1: Complexation energy ($E_{complex}$) for the HG complex between dopamine and functionalized CNPs calcualted at B3LYP/6-31G(d,p) level of theory in gas phase. Complexation energy of a water dimer (2H₂O) is reported for a better comparison. Energy difference (ΔE) is reported, taking into account the HG complex with dopamine as a reference.

HG Complex	E _{complex} (kcal/mol)	ΔE (kcal/mol)
Dopamine@CNPS	19.8	-
2H₂O (dimer)	5.9	-13.9

Figure S11. Stability test: Fluorescence emission values of CNPs_ART on solid support at different time (0-240 minutes, λ_{ex} 380 nm, λ_{em} 440 nm).

Figure S12. Mechanochromic test: G channel values of CNPs_ART on solid support obtained after progressive exposure of polycellulose filter, simulating the addition of DA.

Figure S13. Recovery test: a) optical response expressed in normalised grey channel intensity values (G and G_0 are the Gray channel values after and before the exposure to the analyte, respectively) of CNPs_ART on solid support after the addition of DA 1 nM followed by washing with chloroform (simple immersion of test strip in a elution camera); b) real images and Fiji output of each cycle.