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Experimental Section
Materials

All reagents were used as received without further purification. D-galactosamine hydrochloride
(D-GalN) was acquired from Carbosynth with a purity of 99.0 %. D-glucosamine hydrochloride (D-
GIcN) and D-mannosamine hydrochloride (D-ManN) were purchased from Fisher Scientific with
a purity of 98.0 % and 99.6 %, respectively. 9-Fluorenylmethoxycarbonyl chloride (Fmoc-Cl) was
acquired from Bachem with a purity of 98.9 %.

Synthesis and purification of Fmoc-sugars

The amino sugar hydrochloride (D-GalN, D-GIcN and D-ManN) (1.15 mmol) was dissolved in
water (7 mL) with 2.8 equiv of NaHCO; (Riedel-de Haen). In a separate flask, Fmoc-Cl (2.2 equiv)
was dissolved in dioxane (7 mL, Sigma) and added dropwise to the previously prepared sugar
solution. The solution was stirred at room temperature (RT) under a nitrogen atmosphere during
24 h. The reaction was followed by thin layer chromatography (TLC, ethyl
acetate:methanol:water, 7:2:1) and stopped after 24 h because the spot of the amino sugar
hydrochloride disappeared and the spot of the product with higher Rf emerged.

The reaction mixture was freeze-dried and the free Fmoc-Cl was removed using liquid-
liquid extraction (water-diethyl ether). The water fraction was again freeze-dried. The purity of the
synthetized Fmoc-sugars was assessed by high-performance liquid chromatography (HPLC)
(Smart Line, Knauer) using a reverse-phase C18 Atlantis column (5 uym, 250 x 4.6 mm, Waters).
We used a flow of 1 mL/min, and water (A) and acetonitrile (B), both supplemented with
trifluoroacetic acid (TFA, Sigma-Aldrich) were used as eluents. Gradient: an initial step of 4 min
under isocratic flow of 80% of A, followed by a gradient to 80% of B at 31 min; this gradient was
maintained for 5 min and followed by a gradient to 80% of A for 2 min and an isocratic elution to
80% of A during 4 min. The Fmoc-sugars were characterized using nuclear magnetic resonance
(NMR, 400.13 MHz Avance Ill spectrometer, Bruker, Germany) in DMSO-ds, and mass
spectroscopy (Quattro Micro API, Waters Corporation, U.K.) in positive-ion mode.

Hydrogel preparation

The Fmoc-sugars’ powders were suspended in water (Milli-Q) at the respective concentration (6,
8, 10, 12, 14, 16 and 18 mM). The temperature of the mixture was increased to 363 K and kept
at this temperature until complete dissolution and formation of a clear solution (apx. 3 — 5 min).
The warm solution was cooled to RT. In the CD, fluorescence spectroscopy, and mechanical
experiments a slow cooling rate of 5 K/min or a fast cooling rate of 40 K/min was applied using


mailto:rpires@i3bs.uminho.pt
mailto:pashkuleva@i3bs.uminho.pt

the equipment temperature control. In the experiments without temperature control, namely NMR,
fast cooling was achieved by immersing the recipient with the heated (363 K) CA solution in an
ice bath for a quick cool down or by keeping the warmed solution at room temperature for a
gradual temperature decrease (slow cooling), thereby inducing self-assembly and gel formation.

Fluorescence emission spectroscopy

Fluorescence emission spectra were acquired between 300-600 nm, using an excitation
wavelength at 295 nm, a bandwidth of 2.5 nm, a 50 msec response time and a 2.5 nm data pitch
on a Jasco FP-8500 spectrofluorometer (Jasco Corporation, Japan) at a scanning speed of 200
nm/min. The measurements were performed in a 1 mm path-length quartz cell at 5 K intervals in
the temperature range between 343 and 283 K, with an equilibration stage in each temperature.
The fluorescence emission spectra were recorded at different concentrations of Fmoc-sugars (6,
8, 10, 12, 14, and 16 mM).

Circular Dichroism (CD) Spectroscopy

CD spectra were acquired on a Jasco J1500 spectropolarimeter (Jasco Corporation, Japan) using
a quartz cuvette with a 1 mm pathlength cell. The gel was formed within the cell, each sample
was subject to a heating cycle of 363 at 283 K at a rate of 5 K/min and the ramp measurements
were performed between 240-320 nm. CD spectra of Fmoc-sugar at different concentrations (6,
8, 10, 12, 14, and 16 mM) were recorded at a scan speed of 200 nm/min with a data pitch of 0.5
nm and a bandwidth of 2.0 nm. For all the conditions, a triple acquisition was performed, and the
solvent background was subtracted from the obtained spectra.

Oscillatory Rheology

Dynamic frequency sweep experiments were conducted on a strain-controlled rheometer
(Kinexus Pro, Malvern, U.K.) equipped with 20 mm parallel-plate geometry, and using a gap of
0.40 mm. Hydrogels were prepared in situ, i.e., the warm solution was placed on the warmed
plate (353 K) of the rheometer, and the cooling was performed at 5 K/min (slow) or 40 K/min (fast)
to 293 K. At this temperature, the measurements were performed. The linear viscoelastic range
(LVER) of the hydrogels was determined, and amplitude sweeps at a frequency of 1 Hz and 0.1
- 2% strain were applied. Taking into consideration the LVER results, measurements of storage
modulus (G') and loss modulus (G") were acquired at a frequency of 1 Hz and a strain of 1%. All
measurements were performed in triplicate, and data are reported as average values + standard
deviations.

Scanning electron microscopy (SEM)

High-resolution field emission scanning electron microscope (SEM, Auriga Compact, Zeiss) was
used to observe and image the helicity of nanofibers assembled from the different Fmoc-
glycosamines. Freshly cleaved mica sheets were rinsed with deionized water and dried under a
nitrogen flow. The Fmoc-glycosamines’ hydrogels were placed in contact with the mica during 3
- 4 min to allow the transfer of the fibers from the gel to the mica. The fibers on the mica sheets
were washed three times with deionized water and dried under a stream of nitrogen. Samples
were sputter-coated with a layer of gold (EM Leica ACE600). The SEM analysis was carried out
using an accelerating voltage of 2.5 kV, with magnifications of x30k and x50k.
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Figure S1. HPLC chromatograms of the purified compounds: Fmoc-GlcN (1, A), Fmoc-GalN (2,

B) and Fmoc-ManN (3, C), showing the a and  anomers.
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Figure S2. Electrospray ionization mass spectroscopy (ESI-MS) of the purified compounds,
Fmoc-GIcN (1, A, m/z [M+Na]* = 424), Fmoc-GalN (2, B, m/z [M+Na]*) = 424, [M+K]*) = 440) and
Fmoc-ManN (3, C, m/z [M+Na]* = 424).
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Figure S3. "H NMR spectra of Fmoc-GlIcN (1, A), Fmoc-GalN (2, B) and Fmoc-ManN (3, C) in
DMSO-ds.
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Figure S4. '3C NMR spectra of Fmoc-GlIcN (1, A), Fmoc-GalN (2, B) and Fmoc-ManN (3, C) in
DMSO-ds.
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Figure S5. FTIR spectra of Fmoc-Cl (black line), Fmoc-GIcN (1, red line), Fmoc-GalN (2, blue
line) and Fmoc-ManN (3, green line), showing the formation of the carbamate upon reaction of
Fmoc-Cl with the aminosugars (stretching vibration from C=0, as well as the characteristic Amide

| and Amide Il vibrations).
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Figure S6. '"H NMR spectra of Fmoc-ManN (3, C) in D,O at ~80°C.
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Figure S7. Macroscopic images of the hydrogels/solutions generated by cooling Fmoc-GlcN (1,

A), Fmoc-GalN (2, B) and Fmoc-ManN (3, C) at the time of preparation and over 1 and 2 months
of storage.
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Figure S8. Rheology data for the elastic modulus (G’) of the hydrogels generated from 12mM
Fmoc-GIcN (1) and Fmoc-GalN (2) at slow and fast cooling. Statistically significant differences
between the G’ of the hydrogels generated by 1 vs 2, are marked with * p < 0.05.



