## **Supplementary Information**

## On-demand activatable peroxidase-mimicking enzymatic polymer nanocomposite films

Md. Lutful Amin,<sup>a</sup> Ayad Saeed,<sup>b,c</sup> Le N. M. Dinh,<sup>a</sup> Jiachen Yan,<sup>b</sup> Haotian Wen,<sup>b</sup> Shery L. Y. Chang,<sup>b,d</sup> Yin Yao,<sup>d</sup> Per B. Zetterlund,<sup>a</sup> Tushar Kumeria,<sup>b,c,e\*</sup> Vipul Agarwal<sup>a\*</sup>

<sup>a</sup>Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

<sup>b</sup>School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia

<sup>c</sup>Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia <sup>d</sup>Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia <sup>e</sup>School of Pharmacy, University of Queensland, Brisbane, QLD 4102, Australia

\*Corresponding authors: t.kumeria@unsw.edu.au, agarwalvipul84@gmail.com

| Sample                   | Average Size (nm) | PDI    |
|--------------------------|-------------------|--------|
| Iron oxide nanoparticles | 127               | 0.0556 |
|                          |                   |        |
|                          |                   |        |

Table S1: Particle size analyses of iron oxide nanoparticles.



Figure S1. FeSiNP: synthesis of mesoporous silica nanoparticles and decoration with iron oxide nanoparticles.



**Figure S2.** Characterisation of iron oxide nanoparticles by STEM (scale bar = 100 nm).

**Table S2:** Monomer conversion and particle size analyses of polymer latex.

| P(St-stat-nBA)/FeSiNP                             | 5 wt% | 10 wt% | 20 wt% |
|---------------------------------------------------|-------|--------|--------|
| Conversion (%)                                    | 85.4  | 85.4   | 90.6   |
| Intensity-average particle size (d <sub>i</sub> ) | 85.0  | 88.9   | 82.0   |

Table S3: Molecular weight analyses of polymer latex by GPC.

| P(St-stat-nBA)/FeSiNP | M <sub>n</sub> (g/mol) | M <sub>w</sub> (g/mol) | Ð    |
|-----------------------|------------------------|------------------------|------|
| 5 wt%                 | 101,132                | 413,259                | 4.08 |
| 10 wt%                | 108,325                | 428,996                | 3.96 |
| 20 wt%                | 111,999                | 364,318                | 3.25 |



**Figure S3.** Characterisation of P(St-*stat-n*BA)/FeSiNP films – higher magnification SEM images of nanocomposite films under unstretched and stretched conditions showing overall surface features with the presence of spherical FeSiNPs in the crevices (scale bar =  $3 \mu m$ ).



**Figure S4.** Characterisation of P(St-*stat-n*BA)/FeSiNP films- SEM images in unstretched condition and EDS mapping confirming the elements in images (scale bar =  $25 \mu$ m).

## Stretched



**Figure S5.** Characterisation of P(St-*stat-n*BA)/FeSiNP films- SEM images in stretched condition and EDS mapping confirming the elements in images (scale bar =  $25 \mu m$ ).



Figure S6. SEM-EDS spectra of the scanned images showing the presence of iron and silicon.

| NP    | Film thickness | Tensile strength | Elongation at break |
|-------|----------------|------------------|---------------------|
| (wt%) | (mm)           | (MPa)            | (%)                 |
| 5     | 58             | $0.78\pm0.08$    | 1448                |
| 10    | 62             | $1.71\pm0.21$    | $847\pm27$          |
| 20    | 70             | $1.15\pm0.09$    | $860\pm46$          |

**Table S4:** Mechanical properties of P(St-stat-nBA)/FeSiNP nanocomposite films.





The equations S1-4 describe the stepwise catalytic mechanism of nanozyme FeSiNPs in this study:

| $Fe^{2+} + H202 \rightarrow \cdot OH + Fe^{3+} + H20$ | <b>(S1)</b> |
|-------------------------------------------------------|-------------|
|-------------------------------------------------------|-------------|

$$\cdot OH + TMB \rightarrow TMBox + H2O \tag{S2}$$

 $\cdot OH + H202 \rightarrow H02 \cdot + H20 \tag{S3}$ 

$$HO2 \cdot + Fe^{3+} \to Fe^{2+} + O2$$
 (S4)

Based on the obtained data in this study and previously published report<sup>1</sup>, equation S1 is the rate limiting step.

| NP              | Substrate | $K_m$ (mM) | $V_{max}$ ( $\mu$ M/s) | Reference |
|-----------------|-----------|------------|------------------------|-----------|
| Ir nanoparticle | $H_2O_2$  | 0.27       | 1.5                    | 2         |
|                 | TMB       | -          | -                      |           |
| Au nanocrystal  | $H_2O_2$  | 16.0       | 0.452                  | 3         |
|                 | TMB       | -          | -                      |           |

**Table S5:** Catalytic parameter comparison among different nanozymes.

| D4                                                            | $H_2O_2$ | 41.8   | 0.167   | 4  |
|---------------------------------------------------------------|----------|--------|---------|----|
| Pt nanoparticle                                               | TMB      | 0.119  | 0.21    |    |
| Pt nanocrystal                                                | $H_2O_2$ | 3.07   | 0.1817  | 5  |
|                                                               | TMB      | 0.096  | 0.1414  |    |
| Cu nanocrystal                                                | $H_2O_2$ | 29.16  | 0.0422  | 6  |
|                                                               | TMB      | 0.648  | 0.0596  |    |
| Dd nononartiala                                               | $H_2O_2$ | 537.71 | 0.112   | 7  |
| Pa nanoparticle                                               | TMB      | 0.09   | 0.177   |    |
| Ea O nononarticla                                             | $H_2O_2$ | 10.58  | 0.1459  | 8  |
| re <sub>3</sub> O <sub>4</sub> hanoparticle                   | TMB      | 6.22   | 0.157   |    |
| Co O nononarticlo                                             | $H_2O_2$ | 34.3   | 11.2    | 9  |
| C0 <sub>3</sub> O <sub>4</sub> hanoparticle                   | TMB      | -      | -       |    |
| Fa.O. MoS. nononarticle                                       | $H_2O_2$ | 1.39   | 1.63    | 10 |
| re <sub>3</sub> 0 <sub>4</sub> -wos <sub>2</sub> nanoparticle | TMB      | 0.25   | 0.111   |    |
| Fa.O. C nanowira                                              | $H_2O_2$ | 0.23   | 0.0241  | 11 |
| re <sub>3</sub> 0 <sub>4</sub> -C nanowire                    | TMB      | 0.20   | 0.0134  |    |
| Co-dopped Fe <sub>3</sub> O <sub>4</sub>                      | $H_2O_2$ | 0.19   | 0.715   | 12 |
| nanoparticle                                                  | TMB      | 1.17   | 0.379   |    |
| Fa.O. nonocomposite                                           | $H_2O_2$ | 0.885  | -       | 13 |
| $Fe_2O_3$ hanocomposite                                       | TMB      | 0.582  | -       |    |
| Nanocellulose Fe <sub>3</sub> O <sub>4</sub> /Ag              | $H_2O_2$ | 8.77   | 0.107   | 14 |
| nanoparticle                                                  | TMB      | 0.387  | 0.133   |    |
| FaSiND (our work)                                             | $H_2O_2$ | 0.060  | 0.00672 |    |
| reshvr (our work)                                             | TMB      | 7.143  | 0.01075 |    |

A lower  $K_m$  value suggests higher affinity.  $V_{max}$  is the maximum rate of conversion into the product.



Figure S8. Control experiments – catalytic activity of buffer (blank) and films without FeSiNPs, showing similar absorbance values, which are negligible and considered as a baseline.

## **References:**

- 1. B. Yuan, H.-L. Chou and Y.-K. Peng, *ACS Appl. Mater. Interfaces*, 2022, **14**, 22728-22736.
- G. Jin, J. Liu, C. Wang, W. Gu, G. Ran, B. Liu and Q. Song, *Appl. Catal. B*, 2020, 267, 118725.
- 3. C.-P. Liu, T.-H. Wu, C.-Y. Liu, K.-C. Chen, Y.-X. Chen, G.-S. Chen and S.-Y. Lin, *Small*, 2017, **13**, 1700278.
- 4. W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang and Y. Fu, *Biosens. Bioelectron.*, 2015, **66**, 251-258.
- 5. L. Jin, Z. Meng, Y. Zhang, S. Cai, Z. Zhang, C. Li, L. Shang and Y. Shen, ACS Appl. Mater. Interfaces, 2017, 9, 10027-10033.
- L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed and G. Xu, *Anal. Chim. Acta*, 2013, 762, 83-86.
- 7. S.-B. He, F.-Q. Chen, L.-F. Xiu, H.-P. Peng, H.-H. Deng, A.-L. Liu, W. Chen and G.-L. Hong, *Anal. Bioanal. Chem.*, 2020, **412**, 499-506.
- 8. W. Li, G.-C. Fan, F. Gao, Y. Cui, W. Wang and X. Luo, *Biosens. Bioelectron.*, 2019, **127**, 64-71.
- 9. J. Mu, L. Zhang, M. Zhao and Y. Wang, J. Mol. Catal. A Chem., 2013, 378, 30-37.
- 10. F. Wei, X. Cui, Z. Wang, C. Dong, J. Li and X. Han, *Chem. Eng. J.*, 2021, **408**, 127240.
- 11. R. Zhang, N. Lu, J. Zhang, R. Yan, J. Li, L. Wang, N. Wang, M. Lv and M. Zhang, *Biosens. Bioelectron.*, 2020, **150**, 111881.
- 12. Y. Wang, H. Li, L. Guo, Q. Jiang and F. Liu, *RSC Adv.*, 2019, **9**, 18815-18822.
- 13. X. Liu, T. Gao, H. Liu, Y. Fang and L. Wang, J. Exp. Nanosci., 2022, 17, 75-85.
- 14. S. A. Geleto, A. M. Ariti, B. T. Gutema, E. M. Abda, A. A. Abiye, S. M. Abay, M. L. Mekonnen and Y. A. Workie, *ACS Omega*, 2023 **8**, 48764–48774.