Updated: 18 June 2024

Supporting Information

Injectable Thermogel Constructed From Self-Assembled Polyurethane Micelle Networks For 3D

Cell Culture and Wound Treatment

Yanjun Wang¹, Nan Sheng¹, Ao Wang¹, Min Wang¹, Yuanyang Xu¹, Dan Lu³, Wenkai Liu¹, Zhen

Li¹, Jiehua Li¹, Jianhui Sun^{2*}, Feng Luo^{*1}

1 College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,

Med-X Center for Materials, Sichuan University, Chengdu 610065, China

2 Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China

3 Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University,

Sichuan, Chengdu 610065, China

* E-mail: fengluo@scu.edu.cn

* E-mail: sendy@tmmu.edu.cn

Characterization of Ly-PEG segments (LP).

The structures and compositions of LP analyzed by ¹HNMR and their ¹HNMR results are presented in Figure S2. The sharp peak at 3.66 ppm is attributed to the methine protons on the PEG block (-CH₂CH₂O-). The chemical shifts of Lysine tertiary carbon (-CH-COO) and PEG methoxy proton (-OCH₃) are 3.27 ppm and 3.15 ppm, respectively, indicating that the multifunctional chain extender has been successfully synthesized. ^[1-2]

Fig. S 1 Synthesis of LP.

Fig. S 2 ¹H NMR spectrum of LP.

Synthesis of PUxPy.

PUxPy containing polyurethane emulsion was synthesized by a two-step process: PEG and PCL were added to a three-neck flask. Under nitrogen protection, dehydrate for 2 h at 90 °C under reduced pressure. The reaction was catalyzed by adding LDI and reacted for 2 h at 80 °C. To reduce viscosity, the LP was dissolved with a small amount of DMAc at 40 °C. Then, it was added to the three-neck flask, and the chain was extended at 40 °C for 1.5 h. After

dilution with a small amount of acetone, the pre-polymer was pour into lysine solution emulsified with high-speed stirring, and add NaOH to maintain pH 8-9, and then stir at low speed for 30 min to defoam. Finally, the solid content of the water emulsion is about 20-30%. The infrared spectra of various WPUs were shown in Figure S4.

Fig. S 3 Synthesis procedure of WPU.

Fig. S 4 The infrared spectra analysis of various WPUs.

(cm ⁻¹) Assignment	Wavenumber
H-bond v(NH)	3315
$v_{\rm a}({ m CH_2})$	2930
$v_{\rm s}({ m CH_2})$	2864
Free v(C=O) urethane amide I	1723
H-bond $v(C-N) + \delta(N-H)$	1533
free $v(C-N) + \delta(N-H)$	1460
$v(\text{C-N}) + \delta(\text{N-H})$	1238
free v(C-O-C)	1094

Table S1 The assignment of the FTIR investigations of WPU.

Fig. S 5 DPD simulations of the self-assembly of WPU emulsion. (a)self-assembly behavior of WPU with varying PEG side chain length, (b) self-assembly behavior of WPU with varying polymer concentration.

Fig. S 6 The SEM photographs of PU4P7 emulsion particles. (a) concentration of 0.01 wt% at 25 °C, (b) concentration of 0.01 wt% at 37 °C, (C) concentration of 1.0 wt% at 37 °C.

Fig. S 7 The size statistics of PU4Py (y=3,5,7) emulsion particles. (a) Average size vs temperature for the DLS test, (b) size distribution of PU4P7 emulsion at different concentrations at 37 °C.

Fig. S 8 (a) PUxP7 (x=3,4,5) Hydrogel scanning was conducted within the frequency range, (b)
hydrogel scanning was performed under different solid contents ranging from 8% to 16%, (c)
PU4P7 hydrogel scanning was performed under strain levels ranging from 0.1% to 200%.

Table S 2 Composition and Molecular Weights Polyurethanes with Various Amounts of LP.

Sample	Size (nm)	PDI	
PU4P3	106	0.267	
PU4P5	120	0.236	
PU4P7	136	0.235	

Fig. S 9 Pore size distribution of PU4Py-12% hydrogels.

PUxPy	PEG/%	$LP / g \cdot mol^{-1}$	
PU3P3	30	350	
PU3P5	30	550	
PU3P7	30	750	
PU4P3	40	350	

Table S3 molar ratio of different polyurethane emulsions.

 PU4P5	40	550	
PU4P7	40	750	
PU5P3	50	350	
PU5P5	50	550	
PU5P7	50	750	

Fig. S 10 Degradation curves of PU film and PU4P7 hydrogels in PBS buffer.

Fig. S 11 Subcutaneous degradation of PU4P7 hydrogels in rats.

REFERENCE

- [1] K. Wu, X. Chen, S. Gu, S. Cui, X. Yang, L. Yu, J. Ding, *Macromolecules* 2021, 54, 7421.
- [2] S. M. Hashemnejad, A. Z. M. Badruddoza, B. Zarket, C. R. Castaneda, P. S. Doyle, Nature

Communications 2019, 10,2749.