Electronic Supplementary Information

Photo-responsive Anti-Fouling Polyzwitterionic Brushes: A Mesoscopic Simulation

Zhaohong Miao, Jian Zhou*

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China

* Corresponding author E-mail: jianzhou@scut.edu.cn (J. Zhou.)

Content

Table S1 Repulsive parameters a_{ij} between different beads of TFC film and protein

Table S2 The dielectric constants of systems

Fig. S1 Water distribution in the simulation box of $A_{63}B_{10}C_{40}$ systems under *vis* light exposure, with D = 0.160 (a), 0.230 (b) and 0.314 (c), respectively.

Fig. S2 RMSD profiles of brushes from *vis* light exposure to UV exposure with D = 0.230, in A₆₃B₁₀C₄₀ system (a) and A₆₃B₁₀C₇₀ system (b).

Table S1 Repulsive parameters a_{ij} between different beads of TFC film and protein (blue: the polar amino acid; orange: the moderate polar amino acid; red: the hydrophobic amino acid)

Туре	А	Average	В	Average	С	Average	C2	Average	F	Average
a _{ij}	λ	_	_	_						
ASP	101.74	102.45	110.13	109.62	103.36	100.17	129.49	136.12	104.41	106.94
GLU	99.59		108.91		90.89		145.16		107.83	
LYS	111.97		106.62		98.05		147.68		114.01	
ARG	101.81		106.84		114.26		123.58		103.02	
SER	114.80		123.07		119.07		132.18		118.27	
THR	86.15		97.28		98.69		144.82		111.02	
PRO	100.97		110.85		98.42		124.38		106.87	
ASN	99.62		106.83		94.42		138.08		105.19	
GLN	105.42		116.01		84.41		139.74		91.83	
ALA	91.61	95.09	102.27	102.22	107.12	98.17	152.79	137.87	114.57	109.32
GLY	94.25		107.19		105.27		128.20		115.19	
CYS	77.01		87.08		96.36		134.51		110.71	
HIS	107.11		109.95		90.19		137.53		96.24	
TYR	105.48		104.62		91.90		136.34		109.91	

ILE	101.92	102.72	110.88	108.53	97.00	92.71	128.93	140.84	106.92	107.09
LEU	97.21		110.36		93.74		155.11		106.78	
VAL	110.13		113.98		102.19		146.20		98.78	
PHE	102.11		106.52		87.88		145.56		108.92	
MET	94.79		104.81		85.60		142.06		110.44	
TRP	110.19		104.62		89.86		127.19		110.70	

Table S2 (a) The dielectric constants of the systems with D = 0.160, R = 0.136, L = 4 / 7

type ϵ_r	SP-form	MC-form
A ₆₃ B ₁₀ C ₄₀	2.501	29.061
A ₆₃ B ₁₀ C ₇₀	2.397	39.225

Table S2 (b) The dielectric constants of the systems with D = 0.230, R = 0.068, 0.136, 0.205, L = 4 / 7

type ε _r	SP-form	MC-form
A68B5C20	2.424	18.592
A ₆₈ B ₅ C ₃₅	2.366	26.766

$A_{63}B_{10}C_{40} \\$	2.349	29.013
A ₆₃ B ₁₀ C ₇₀	2.277	39.218
A ₅₈ B ₁₅ C ₆₀	2.297	36.324
A58B15C105	2.223	46.801

Table S2 (c) The dielectric constants of the systems with D = 0.314, R = 0.136, L = 4 / 7

type ε _r	SP-form	MC-form
A ₆₃ B ₁₀ C ₄₀	2.257	28.984
A63B10C70	2.204	39.214

According to the work of Yang *et al.*¹, the dielectric constants were listed in Table S2. To reflect ε_r in P(ACN-*r*-BBEM)-*g*-SPMA and BSA systems, there was a reasonable approximation to estimate it according to molecular structure. Namely, ε_r is related to the number of hydrophobic and hydrophilic beads in the coarse-grained model. The hydrophobic beads are mainly composed of alkanes with ε_r about 2.0. The hydrophilic beads are soluble in water surrounded by water beads, therefore, ε_r can be set as 78.0 (dielectric constant of water at the room temperature). Thus, the system ε_r can be expressed as:

$$\varepsilon_{\rm r} = \frac{n_{\rm hydrophilic} * 78.0 + n_{\rm hydrophobic} * 2}{n_{\rm hydrophilic} + n_{\rm hydrophobic}}$$

where $n_{hydrophilic}$ means the total number of hydrophilic beads of polymers in the system, and $n_{hydrophobic}$ means the total number of hydrophobic beads of polymers in the system.

Fig. S1 Water distribution in the simulation box of $A_{63}B_{10}C_{40}$ systems under *vis* light exposure, with D = 0.160 (a), 0.230 (b), 0.314 (c), respectively.

Fig. S2 RMSD profiles of brushes from *vis* light exposure to UV exposure with D = 0.230, in A₆₃B₁₀C₄₀ system (a) and A₆₃B₁₀C₇₀ system (b).

In Fig. S2, RMSD data of brushes from the SP form to the MC form in system of $A_{63}B_{10}C_{40}$ are shown. As light switches from *vis* to UV, in the first 1×10^5 steps, the RMSD curve rises sharply, namely, the conformation of brushes changes obviously. Under *vis* exposure, the chain with SP form is in a shrank state and the size is smaller; when

experiencing UV radiation, the chain swells apparently and the size increases obviously. Those results confirm the reasonability of the R_g^2 data of system A₆₃B₁₀C₄₀, as well as explain the thickening of the selective layer. Namely, the swelling hydrophilic selective layer can supply a strong mechanical push to remove the foulant. Fig. S2b displays the RMSD data of A₆₃B₁₀C₇₀ system. Although the RMSD curve also rises sharply in the first 1×10^5 steps, the equilibrium value is slightly less than that of A₆₃B₁₀C₄₀ system. That is, the conformation stability of chain in A₆₃B₁₀C₇₀ system is higher than that of A₆₃B₁₀C₄₀ system. The longer brush-hair causes a stronger steric-hindrance effect to limit the deformation of brushes and creates a tighter hydration layer when experiencing UV radiation. Therefore, the R_g^2 values in A₆₃B₁₀C₇₀ system shows opposite change trend compared with those in A₆₃B₁₀C₄₀ system. While the antifouling ability of the system become enhanced.

REFERENCE

^{1.} Yang, S. C.; Zhu, Y. L.; Qian, H. L.; Lü, Z. Y. Molecular dynamics simulation of antipolyelectrolyte effect and solubility of polyzwitterions. *Chem Res Chinese U* **2017**, 33 (2), 261-267 DOI: 10.1007/s40242-017-6354-0.