Supplementary Information

Development of a Dextrin-Vitamin D3 Micelle Nanocarrier for the Antimicrobial Peptide LLKKK18 as a potential therapeutic agent for Bone Infections

Alexandra Machado^{1,2}, Miguel Gama^{1,2}, José Alberto Martins^{3*}

¹ Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057 Braga, Portugal.

² LABBELS - Associate Laboratory, Braga, Guimarães, Portugal

³ Center of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

*Corresponding author

Figure SI 1. ¹H NMR spectra: SucVD3 (400 MHz, CDCl₃); conjugate VD3DexSuc (400 MHz, DMSOd₆) and Dextrin (400 MHz, DMSOd₆).

The signal at δ 5.3-5.8 ppm, can be assigned to the α -anomeric protons of the glucose units of dextrin. Some signals can be clearly assigned to protons of the SucVD3 moiety, especially the duplet signals at δ 0.83 and 0.88 ppm, attributed to the isopropyl methyl groups and to the methyl group of the hydrocarbon chain of VD3, respectively. The broad multiplet signal δ 2.49 ppm, overlapped with the residual DMSO signal, is assigned to methylene protons of the succinic acid linker of the SucVD3 moiety and to the pendant succinic acid groups (Figure 1 SI). The degree (percentage) of derivatization of the dextrin backbone with SucVD3 (8.3 %) was estimated by equation 1.

Mol% grafting of Dex with SucVD3 =
$$\frac{\frac{0.75}{9}}{1}$$
 x 100 = 8.3 mol% (eq. 1)

x (0.75) represents the aggregated integration of the signals assigned to the methyl protons of the isopropyl group and to the methyl group of the hydrocarbon chain (9 protons) of SucVD3 and y (1.0) is the integration of the α -anomeric protons of the glycosidic units (1 proton) of dextrin.

Figure SI 2. Dose-response (cell viability) curves for cells exposed for 24 h to different concentrations of free LLKKK18 (LL18), loaded-LL18, micelles and LL18-loaded micelles in: (A) MC3T3-E1 and B) BMM Φ , assessed by the MTT reduction assay, for half-maximal inhibitory concentration (CC₅₀) calculation. Data are presented as mean ± standard deviation (n = 3).

Figure SI 3. MTT assay dose-dependent cell viability in the MC3T3-E1cell line (A) and in BMM Φ macrophages (B) after 24 hrs incubation with vitamin D3. Results are expressed as percentage of the negative control and are presented as mean ± SD, n=3.

Figure SI 4. Micelle-conjugated fluorescein isothiocyanate (FITC) quantification FITC by fluorescence spectroscopy ($\lambda_{ex477}/\lambda_{em517}$): (A) spectral scanning curves of five different pure FITC concentrations, (B) FITC standard curve and (C) spectral scanning curves of four different FITC-VD3-Dex production ratios. Concentrated stock solutions of pure FITC and FITC-VD3-Dex were prepared in DMSO and then serially diluted in PBS solution up to a fluorescent signal that could fit within the calibration curve range.

Table SI 1. Dynamic light scattering measurements of unlabeled and FICT-labelled micelles, dissolved in PBS at a constant concentration of 1 mg/mL, and quantification of conjugated FITC by fluorescence spectroscopy (λ ex477/ λ em517). Results for LL18 or LL18-TAMRA-loaded micelles are also shown. Results are expressed as mean ± SD (n=3).

FITC:VD3DexSuc initial ratio (mg:mg)	Average size (nm)	PDI	ζ-potential (mV)	FITC (μg)/mg of micelle	Initial LL18 (μg/mL)	LL18 AE (%)
Unlabelled micelles	162.4 ± 8.9	0.17 ± 0.02	- 35.2 ± 2.5			
1:40	124.7 ± 2.7	0.18 ± 0.03	- 19.7 ± 1.8	1.90 ± 0.08		
Unlabelled micelles	143.1 ± 4.6	0.21 ± 0.01	- 26.1 ± 1.5		100	86.3 ± 0.4
1:40	147.8 ± 8.7	0.22 ± 0.01	- 3.9 ± 0.1		25	100 ± 0.0
1:40	204.3 ± 10.9	0.41 ± 0.02	- 8.9 ± 0.3		100	89.7 ± 0.1
Unlabelled micelles	142.5 ± 8.5	0.15 ± 0.03	- 25.8 ± 2.1		25*	
1:40	96.8 ± 4.2	0.12 ± 0.01	- 14.8 ± 0.1		25*	

LL18, LLKKK18; FITC, fluorescein isothiocyanate; PDI, polydispersity index; AE, association efficiency. *LL18-TAMRA (Based on LL18 AE % results, loading of LL18-TAMRA is assumed as 90 to 100 %).

VD3DexSucFITC

LL18-loaded VD3DexSucFITC

Figure SI 5. Representative Cryo-SEM microphotographs of (A) FITC-labelled micelles (1:40 mass ratio) and (B) LL18-loaded FITC-labelled micelles (100 μ g/mL of LL18/mg micelles), in PBS solution at 1 mg/mL (magnification of 50,000×. Scale bars = 1 μ m).

LL18-TAMRA tracking after 1 h

Figure SI 6. Subcellular localization analysis by confocal laser scanning microscopy (CLSM) of free and micelle-loaded LL18-TAMRA after 1 h incubation MC3T3-E1 (60x magnification) and BMM Φ (100x magnification). Formulation of 25 µg:1 mg peptide:micelle ratio, incubated at 0.5 mg/mL. Green signal refers to lysosome probe, red signal to TAMRA.

Figure SI 7. Subcellular localization analysis using a confocal laser scanning microscope (CLSM) of: (left) FITC-labelled micelles loaded with TAMRA-labelled LL18 after a 24 h incubation; and (right) free TAMRA-labelled LL18 and empty FITC-labelled micelles after 1 h incubation each, separately, in MC3T3-E1 (60x magnification) and BMMΦ (100x magnification). Formulation of 25 µg:1 mg (peptide:micelle ratio), incubated at 0.5 mg/mL. Lysosomes are not marked, green signal refers to FITC, red signal to TAMRA.

Figure SI 8. Quantification (%) of open wound area in MC3T3-E1 cells after 24h (n=6). Results presented as mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001). Formulation of 100μg:1mg peptide:micelle ratio.

Figure SI 9. Dose(μ g/mL)-response results for MC3T3-E1 cells exposed up to 72 h to different concentrations of mitomycin C dissolved in culture medium, assessed by the MTT reduction assay. Typical cell seeding for this assay was reduced to a half (0.5 x 10⁵ cell/mL) in order to provide space for a 72-h proliferation. Results were expressed in comparable absorbance values. A concentration of 0.05 μ /mL was shown to inhibit cell proliferation whilst maintaining viability and, therefore, selected for the wound healing assay. Data are presented as mean ± SD (n = 3).