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Supplemental results

Figure S1 1H NMR spectrum of probe 1.

Figure S2 13C NMR spectrum of probe 1.



Figure S3 ESI-MS spectrum of probe 1.

Figure S4 1H NMR spectrum of probe 2.



Figure S5 13C NMR spectrum of probe 2.

Figure S6 ESI-MS spectrum of probe 2.



Figure S7 The responses of probe 1 (10 μM) with Hg2+ (4 μM) in different solvents. (a) DMF. (b) 

DMSO. (c) THF. (d) CH2Cl2. (e) C2H5OH. (f) CH3OH. (g) time-dependent effects of probe 1 (10 μM) 



in different solvents. (h) The ratio of fluorescence intensity in the presence and absence of Hg2+.

Figure S8 The fluorescence intensities of probe 1 (10 μM) with Hg2+ (4 μM) in PBS buffer solution 

at different pH (5.8 to 8.0).

Figure S9 Quantum yields of (a) probe 1 and probe 1 + Hg2+, (b) probe 2 and probe 2 + Hg2+ in 

PBS buffer solution with quinine sulfate (0.54, 0.1 M H2SO4) as a reference. 



Figure S10 (a, b) Fluorescence lifetimes of probe 1 and probe 1 + Hg2+; (c, d) Fluorescence 

lifetimes of probe 2 and probe 2 + Hg2+.

Figure S11 UV-vis spectra of probe 1 (10 μM) in the presence of Hg2+ (4 μM) in PBS buffer 

solution. 



Figure S12 The responses of probe 2 (10 μM) with Hg2+(4 μM) in different solvents. (a) DMF. (b) 

DMSO. (c) THF. (d) CH2Cl2. (e) CH3OH. (f) C2H5OH. (g) PBS. (h) The ratio of fluorescence intensity 

in the presence and absence of Hg2+.



Figure S13 UV-vis spectra of probe 2 (10 μM) in the presence of Hg2+ (4 μM) in PBS buffer 

solution. 

Figure S14 DFT theoretical calculations of probe 1 and probe 2 [1-5]. (a) HOMO and LUNO 

orbitals of these two probes. (b) The electronic loss abilities of the naphthalene portion in two 

probes. (c) The π-π stacking mode of two probes. 



Figure S15 The concentration-dependent fluorescent spectra of probe 1 (10 μM) versus Ag+, Fe2+, 

Fe3+, Ca2+ (0, 2, 4, 6 and 10 μM) in PBS buffer solution.



Table S1: Previous reported fluorescence probes for mercury ion detection.

No. Probes Medium LOD Applications Ref.

1
O

N

O

N

N

CH
S

EtOH:H2O (1:1, v/v) 1 nM
IMTECH No. 
3018 cells,

water samples
[6]

2

O

N NH
NH

O O

N
H

N
H

N

O

OH
N

H
N

EtOH:H2O (1:1, v/v) 1.3 nM
L929 cells, 

animal tissues, 
plant tissues

[7]

3
N
B
N

OH
N

HO

F F

EtOH:Tris–HCl buffer (1:9, v/v) 1.73 nM
HeLa cells, 
zebrafish, 

nude mouse
[8]

4

N

S
H
N

O

O
B
OH

OH

N

S
H
N

O

O

HEPES buffer (1% CH3CN)
4.02 nM,

1.82 nM
Cells [9]

5
O

S

S
CO2H

CO2H

OEt2N

PBS buffer (0.2% DMSO) 2.4 nM MCF cells [10]

6

O O

O

HOOC

NS

HEPES buffer 3.6 nM

RAW 264.7 
macrophage 

cells, zebrafish, 
water samples

[11]

7
S

N S

S
HO

HEPES buffer: EtOH (1: 1, v/v) 5.8 nM
biological serum 

samples
[12]

8
NN

N
N O

N

O

NH
NH

S

N

O

PBS:C2H5OH (9/1, v/v) 9.1 nM
Glioma cells,
 lake water

[13]

9
N

N

N

N

HEPES buffer: ACN (3:7,v/v) 10 nM

HeLa cells,
 water samples,

paper strips, 
protein medium

[14]

10 S

N

N CN

CNH2N

C6H13

EtOH:H2O (6:4, v/v) 17.8 nM HeLa cells [15]



11
N

N N

O

N O N

N

O

NH
NH

S

EtOH:H2O (2:8, v/v) 18.8 nM Glioma cells [16]

12

OO

O O

O

O

HO3S

HO3S

S

S

S

S

COOH

COOH

COOH

COOH

H2O: THF (1:99, v/v) 20 nM fibers [17]

13
OO

EtOH:H2O (1:1, v/v) 20.7 nM water samples [18]

14

O

N N

N

MeOH:H2O (3:7, v/v) 26.4 nM HeLa cells, [19]

15

O

N

S

N
H

N
H

PBS buffer: DMF(8:2, v/v) 39 nM Cells [20]

16

O

N
N
S

NH3C

H3C

N CH3

CH3

O
O

N

EtOH: Tris–HCl buffer (1:1, 
v/v)

40 nM water samples [21]

17

O

N
C
O

N

NN

HN

N
H

N
H

N
H

S

S

ACN:H2O (1:99, v/v) 60.78 nM
sf9 cells, 

water samples
[22]

18
O

N

O

NH2

N N

HOOC

Water 97 nM
HeLa cells, 

water samples
[23]

19 N
SH

HO
PBS buffer (10 mM) 1.98 nM

water samples, 
HepG2 cells

This 
work



Table S2 the atomic charges of C and H on naphthalene portion in probe 1 and probe 2.

probe 1 probe 2

No. Atom Atomic charge No. Atom Atomic charge

1 C 0.30364 1 C 0.30164

2 C -0.25448 2 C -0.24045

3 C -0.02620 3 C -0.02996

4 C -0.09386 4 C -0.09369

5 C -0.15097 5 C -0.15083

6 C -0.27849 6 C -0.29104

7 H 0.21337 7 H 0.21290

8 H 0.22350 8 H 0.22255

9 C -0.18524 9 C -0.18379

10 C -0.13501 10 C -0.13416

11 H 0.21370 11 H 0.21199

12 H 0.20984 12 H 0.22011

13 C -0.12610 13 C -0.12623

14 C -0.17100 14 C -0.17329

15 H 0.20591 15 H 0.20572

16 H 0.23581 16 H 0.23548
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