Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

## In Vitro and In Vivo Biocompatibility Assessment of Chalcogenide Thermoelectrics as Implants

Mingyuan Gao<sup>1,#</sup>, Yiping Luo<sup>2,3,#</sup>, Wen Li<sup>1,\*</sup> Longpo Zheng<sup>2,3\*</sup> and Yanzhong Pei<sup>1,\*</sup>

<sup>1</sup>Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji Univ., 4800 Caoan Rd., Shanghai, 201804, China <sup>2</sup>Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji Univ., 301 Yanchang Rd., Shanghai 200072, China.

<sup>3</sup>Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji Univ., 301 Yanchang Rd.,Shanghai 200072, China.

<sup>#</sup>The authors equally contributed

\*Email: liwen@tongji.edu.cn (WL), dr.zheng@tongji.edu.cn (LZ), yanzhong@tongji.edu.cn (YP)

Table S1. Synthesis parameter for various thermoelectric materials

|                                                       | 1                      |         |                          |                     |                |                 |              |
|-------------------------------------------------------|------------------------|---------|--------------------------|---------------------|----------------|-----------------|--------------|
| Material                                              | Melting temperature/°C | Melting | Annealing temperature/°C | Annealing<br>time/d | Hot pressing   | Hot pressing    | Hot pressing |
|                                                       |                        | time/n  |                          | time, a             | temperature/ e | pressure/ivii a |              |
| SnSe                                                  | 950                    | 12      | 500                      | 2d                  | 510            | 50              | 30           |
| Ag <sub>2</sub> Se                                    | 1050                   | 8       | 500                      | 2d                  | 350            | 50              | 30           |
| $Cu_2Se$                                              | 1150                   | 12      | 800                      | 3d                  | 450            | 65              | 30           |
| $Bi_2Se_3$                                            | 800                    | 10      | 500                      | 2d                  | 500            | 80              | 20           |
| Te                                                    | 550                    | 8       | 400                      | 3d                  | 400            | 90              | 20           |
| GeTe                                                  | 950                    | 7       | 627                      | 3d                  | 600            | 80              | 50           |
| SnTe                                                  | 950                    | 6       | 677                      | 2d                  | 627            | 60              | 30           |
| MnTe                                                  | 950                    | 6       | 650                      | 3d                  | 600            | 65              | 30           |
| Bi <sub>2</sub> Te <sub>3</sub>                       | 800                    | 10      | 500                      | 2d                  | 450            | 80              | 30           |
| $\mathrm{Bi}_{2}\mathrm{Te}_{2.88}\mathrm{Se}_{0.12}$ | 800                    | 10      | 500                      | 2d                  | 420            | 80              | 30           |
| $Bi_{0.5}Sb_{1.5}Te_3$                                | 800                    | 10      | 500                      | 2d                  | 400            | 50              | 30           |
| $Sb_2Te_3$                                            | 723                    | 6       | 400                      | 2d                  | 500            | 50              | 30           |



Fig. S1. Powder XRD patterns for various thermoelectric materials.



Fig. S2. SEM images and corresponding EDS mappings for various thermoelectric materials.



Fig. S3. Temperature dependent transport properties of resistivity (a), Seebeck coefficient (b), Hall carrier concentration (c), Hall carrier mobility (d), thermal conductivity (e) and power factor (f) for various thermoelectric materials.



Fig. S4. Hemolytic effect of thermoelectric materials extracts after 2 h incubation with RBCs at 37 °C. Data are presented as the mean  $\pm$  s.d. (n = 3 independent experiments)



Fig.S5 Representative histological images stained with H&E of heart, liver, spleen, lung, spleen, kidney and brain organs after implantation of thermoelectric materials for 3 days (n = 3). The size of scale bar corresponds to 100  $\mu$ m.



Fig. S6. Representative histological images stained with H&E of heart, liver, spleen, lung, spleen, kidney and brain organs after implantation of thermoelectric materials for 7 days (n = 3). The size of scale bar corresponds to 100  $\mu$ m.



Fig. S7. Body weight tracking after the thermoelectric materials implanted subcutaneously in rats.



Fig. S8. General observation of Ti alloys and thermoelectric materials after subcutaneous implantation for 3, 7, and 30 days.



Fig.S9. Fibrous capsule thickness of Ti alloys and thermoelectric materials implanted subcutaneously in rats.



Fig. S10. Photos of Ti alloys and thermoelectric materials after subcutaneous implantation for 3, 7, and 30 days.



Fig. S11. SEM images and corresponding EDS mappings for Ag<sub>2</sub>Se after subcutaneous implantation for 3, 7, and 30 days.



Fig. S12. SEM images and corresponding EDS mappings for Bi<sub>2</sub>Se<sub>3</sub> after subcutaneous implantation for 3, 7, and 30 days.



Fig. S13. SEM images and corresponding EDS mappings for Bi<sub>2</sub>Te<sub>3</sub> after subcutaneous implantation for 3, 7, and 30 days.