Supporting Information

Magnetic MOF composites for the electrocatalysis and biosensing of dopamine released from living cells

Jiarong Guo^a, Ying Ma^c, Tongyu Han^d, Jiao Yang^{b,*}, Peng Miao^{a,*}

^a Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

^b Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China

^c Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China

^d State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

* Corresponding authors.

E-mail: yangjiaomed@126.com; miaopeng@sibet.ac.cn.

Figure S1. TEM images of (A) Fe₃O₄ and (B) AuNPs. (C) UV-vis absorption spectrum of AuNPs. Inset is

the picture under daylight.

Figure S2. TEM images of (A) ZIF-8 and (B) Fe₃O₄@ZIF-8.

Figure S3. (A) TEM image and (B) size distribution of Fe₃O₄@ZIF-8@AuNPs-COOH. (C) Zeta potentials of Fe₃O₄, Fe₃O₄@ZIF-8, Fe₃O₄@ZIF-8@AuNPs and Fe₃O₄@ZIF-8@AuNPs-COOH, respectively.

Figure S4. (A) FTIR spectra of Fe₃O₄, Fe₃O₄@ZIF-8 and Fe₃O₄@ZIF-8@AuNPs. (B) XRD patterns of Fe₃O₄@ZIF-8 and Fe₃O₄@ZIF-8@AuNPs. (C) XPS survey spectrum of Fe₃O₄@ZIF-8@AuNPs-COOH. High-resolution XPS spectra of (D) Fe 2p, (E) Au 4f, Zn 3p, (F) Zn 2p, (G) C 1s, (H) N 1s and (I) O 1s.

Figure S5. Differential pulse voltammograms of bare electrode, after modified with Fe₃O₄, Fe₃O₄@ZIF-8, Fe₃O₄@ZIF-8@AuNPs and Fe₃O₄@ZIF-8@AuNPs-COOH in 0.1 M PBS (pH 7.0) containing 500 μM dopamine.

Figure S6. Differential pulse voltammograms of magnetic electrodes modified with (A) $Fe_3O_4@ZIF-8@AuNPs-COOH$ and (B) $Fe_3O_4@ZIF-8@AuNPs$ in 0.05 mM dopamine (PBS buffer) without and with AA (1 mM) or UA (1 mM). (C) The selectivity of the magnetic electrodes modified with $Fe_3O_4@ZIF-8@AuNPs-COOH$ and $Fe_3O_4@ZIF-8@AuNPs$ towards AA and UA.

Figure S7. Cyclic voltammograms of magnetic electrodes modified with Fe₃O₄@ZIF-8@AuNPs-COOH in 0.1 M PBS (pH 7.0) without and with dopamine (0.1 mM).

Figure S8. (A) Cyclic voltammograms at different scan rates (from 10 to 200 mV/s) with Fe₃O₄@ZIF-8. (B) Relationships between oxidation/reduction peaks of Fe₃O₄@ZIF-8 and scan rate. (C) Cyclic voltammograms at different scan rates (from 10 to 200 mV/s) with Fe₃O₄@ZIF-8@AuNPs. (D) Relationships between oxidation/reduction peaks of Fe₃O₄@ZIF-8@AuNPs and scan rate.

Figure S9. Comparison of DPV peak currents for the detection of dopamine in three samples using Fe₃O₄@ZIF-8@AuNPs-COOH without and with sonication.

Sensor	Technique	LOD (µM)	Linear range (µM)	Ref
N and Co-doped carbon	DDV	0.24	2 (0.5	1
particles/GCE	DPV	0.34	2 - 69.5	1
Cu-MOFs/MWCNT-Au@Ag/GCE	DPV	0.082	0.6 - 70	2
Ag-ZIF-67p/GCE	DPV	0.05	0.1 - 100	3
Co ₃ O ₄ /NiCo ₂ O ₄	CA	0.241	24 - 329	4
BC/Co ₃ O ₄ /FeCo ₂ O ₄ /GCE	DPV	0.04587	0.1 - 250	5
Ni-MOFs/GCE	DPV	0.06	0.2 - 100	6
GO-UiO-66-RT	DPV	2.1	20 - 200	7
Fe ₃ O ₄ @ZIF-8@AuNPs-COOH	DPV	0.026	0.05 - 120	this work

Table S1. Comparison of different MOFs based sensors for electrochemical detection of dopamine.

Table S2. Detection results of dopamine in human serums.

Sample	Spiked (µM)	Found (µM)	Recovery (%)	RSD (%)
1	1	0.97	97.2	0.5
2	30	29.72	99.1	0.3
3	50	49.83	99.7	2.3
4	70	67.57	96.5	3.2
5	100	100.38	100.38	1.4

References

- H. L. Guo, M. Wang, L. Zhao, N. Youliwasi and C. G. Liu, *Microporous Mesoporous Mater.*, 2018, 263, 21-27.
- 2. W. Q. Yao, H. Guo, H. Liu, Q. Li, R. Xue, N. Wu, L. Li, M. Y. Wang and W. Yang, J. *Electrochem. Soc.*, 2019, **166**, B1258.
- J. Tang, Y. Liu, J. Q. Hu, S. B. Zheng, X. C. Wang, H. P. Zhou and B. K. Jin, *Microchem. J.*, 2020, 155, 104759.
- 4. T. J. Liu, X. Y. Zhang, K. Fu, N. Zhou, J. P. Xiong and Z. Q. Su, in *Biosensors*, 2021, vol. 11, p. 452.
- Z. W. Lu, J. Zhong, Y. Zhang, M. M. Sun, P. Zou, H. J. Du, X. X. Wang, H. B. Rao and Y. Y. Wang, J. Alloy. Compd., 2021, 858, 157701.
- 6. Z. X. Huang, L. J. Zhang, P. F. Cao, N. Wang and M. Lin, *Ionics*, 2021, 27, 1339-1345.
- Y. N. Chang, C. H. Shen, C. W. Huang, M. D. Tsai and C. W. Kung, *ACS Appl. Nano Mater.*, 2023, 6, 3675-3684.