Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Nanomolar Level Electrochemical Detection of Glycine on a Miniaturized Modified Screen-Printed Carbon-based Electrode; A Comparison of Performance with Glassy Carbon Electrode System

Saisree S.^{a,} *, Chandradas Shamili^{a,b}, Sandhya K. Y.^c, Surendran Kuzhichalil Peethambharan^{a,b}, and Achu Chandran^{a,b,} *

^aMaterials Science and Technology Division, CSIR-National Institute of Interdisciplinary

Science and Technology, Industrial Estate, Thiruvananthapuram-695 019, Kerala, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

^cDepartment of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvananthapuram 695547, Kerala, India.

*Corresponding authors: Email: <u>achuchandran@niist.res.in</u> (A. Chandran)

Email: saisreesn@gmail.com (Saisree. S)

Content list

Contents	Page
Figure S1	2
Figure S2	3
Sensitivity Calculation	4
LOD Calculation	4

Figure S1. (A) The UV-Vis spectrum of AuCuNC@N-GQD; (Inset of (A) The digital images of the PL of the AuCuNC@N-GQD under normal and short-UV (365 nm); (B) The emission spectrum of AuCuNC@N-GQD; (C) MS-ESI-TOF mass spectra of AuCuNC@N-GQD.

Figure S2. The CV graphs of 1 mM GLY in 0.1 M NaOH on AuCuNC@N-GQD/SPE

Sensitivity Calculation

The sensitivity of an electrode depends on the current response (I), concentration of the analyte (C) and also the area of the electrode (A) used. They are related as,

Calculation 1

 $Sensitivity = \frac{Current response}{Concentration of analyte * Area of electrode}$

From the calibration curve,

 $I_1 = 2.4648 \ \mu A$ $C_1 = 29.350 \ \mu M$

 $I_2 = 7.3626 \ \mu A$ $C_2 = 218.111 \ \mu M$

 $\Delta I = 4.8978 \ \mu A$ $\Delta C = 188.761 \ \mu M$

Area of the electrode = 12.56×10^{-2} cm² (r=0.2 cm)

Sensitivity = 4.8978/(188.761*12.56×10⁻²) µA µM⁻¹ cm⁻²

 $= 0.2065851 \ \mu A \ \mu M^{-1} \ cm^{-2}$

Calculation 2

 $Sensitivity = \frac{Slope \ of \ the \ calibration \ curve}{Area \ of \ the \ electrode}$

Slope of the calibration curve= $0.0259 \ \mu A/\mu M$ from LDR graph

Area of the electrode = 12.56×10^{-2} cm² (r=0.2 cm)

Sensitivity=0.0259/(12.56×10⁻²) µA µM⁻¹ cm⁻²

=0.2062102 μ A μ M⁻¹ cm⁻²

Form the calculation 1 and calculation 2 the sensitivities obtained remains same that indicate that both the equations are valid for sensitivity calculations.

LOD Calculation

$$LOD = \frac{3\sigma}{m}$$

 σ - The standard deviation of the current responses of blank

m-Slope of Current vs Concentration graph