Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supporting Information (SI)

Bioinspired porous and electroactive reduced graphene oxide hydrogel based biosensing

platform for efficient detection of Tumor Necrosis Factor-a

Parth Kapil^{1#}, Damini Verma^{1#}, Rangadhar Pradhan^{1*}, Ashish Kalkal^{3,4*}, Gopinath Packirisamy^{1,2*}

¹Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India

²Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India

³Nanostructured System Laboratory, Department of Mechanical Engineering, University College

London, London, WC1E 7JE, UK

⁴Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, W1W7TS, UK

Authors have contributed Equally

*Corresponding authors: Ashish Kalkal, Rangadhar Pradhan, Gopinath Packirisamy

Email ID: a.kalkal@ucl.ac.uk, rangadhar@gmail.com, gopi@bt.iitr.ac.in

S1. Chemicals and reagents

Graphene oxide nano-powder, L-cysteine (L-cys), sodium dihydrogen phosphate monohydrate [NaH₂PO₄.H₂O], disodium hydrogen orthophosphate [Na₂HPO₄], sodium chloride [NaCl], sodium hydroxide (NaOH), potassium ferricyanide (K₃[Fe(CN)₆]), and potassium ferrocyanide K₄[Fe(CN)₆].3H₂O were obtained from Sisco research laboratories, India. Bovine serum albumin (BSA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and N-hydroxy-succinimide (NHS) were sourced from Sigma Aldrich, India. Human Tumor Necrosis Factor- α (TNF- α) recombinant protein (catalog # RTNFAI) and TNF- α monoclonal antibody (catalog #7124-MSM5-P1) were bought from Thermo Fischer Scientific. Artificial saliva (CAS:7732-18-5) was sourced from Nanochemazome. The commercial screen-printed electrodes (ItalSens Gold SPE W1-3) were obtained from PalmSens. All the chemicals used were of high analytical quality and were used as supplied without any additional modification. Phosphate-buffered saline (PBS) solutions of various pH were made using Na₂HPO₄.H₂O and NaH₂PO₄ in deionized water having a resistivity of 18 M Ω cm. Saline (0.9% NaCl) was added to the buffer solutions to maintain the osmolarity. All the dilutions of antigen and antibody were made in PBS of pH 7.0 and kept at 4 °C till further use.

S2. Instrumentation and characterizations

The successful reduction of GO to rGO and the formation of the L-cys_rGO hydrogel were validated using multiple characterization techniques. To investigate the surface modification, such as functional groups and various bonds present in L-cys_rGO hydrogel, an Agilent Cary 630 Fourier transform infrared spectrometer (FTIR) was utilized. Brunauer-Emmett Teller (BET) analyzer was used to calculate the porosity parameters using the Quantachrome instrument. The morphology of L-cys_rGO hydrogel was studied by Field emission scanning electron microscopy (Thermo Fischer Apreo S Low vac FESEM and Zeiss Gemini 300

FESEM) at an operating 20 kV potential. To analyze the crystallinity and structure of the hydrogels, TEM analysis was done using High-resolution transmission electron microscopy HR-TEM, JEOL JEM-2200 FS, which was operated at 200 kV. The samples for TEM analysis were prepared by dropping L-cys_rGO hydrogel powder solution on a carbon copper grid. Electrochemical analysis were done using an Autolab (PGSTAT204) electrochemical analyzer from Metrohm, India. Gold screen printed electrodes (gSPE) were used in the study, which has a three-electrode system with a circular working electrode of gold (4 mm diameter), a silver pseudo-reference electrode, and a counter electrode also made of gold. Electrochemical studies of the electrodes were done in PBS with $[Fe(CN)_6]^{3-/4-}$ as the redox coupler.

Table S	51:	Tabular	representation	of peak	current	values	of	different	electrodes	in	CV	and
DPV res	spoi	nse curv	es									

Electrode	Peak current (µA)			
	CV	DPV		
Bare gSPE	78.61	92.13		
L-cys_rGO hydrogel/gSPE	91.34	110.06		
anti-TNF-α/L-cys_rGO hydrogel/gSPE	87.68	83.63		
BSA/anti-TNF-α/L-cys_rGO hydrogel/gSPE	77.88	65.10		

Fig. S1: Scan rate studies of (a) L-cys_rGO hydrogel/gSPE electrodes and (d) BSA/anti-TNF- α /L-cys_rGO hydrogel/gSPE electrode in PBS. I_{pa} and I_{pc} peak current curves of (b) L-cys_rGO hydrogel/gSPE and (e) BSA/anti-TNF- α /L-cys_rGO hydrogel/gSPE immunosensor, respectively, against the square root of the scan rates. Peak potential changes (ΔE_p) versus square root of the scan rates for (c) L-cys_rGO hydrogel/gSPE and (f) BSA/anti-TNF- α /L-cys_rGO hydrogel/gSPE electrode, respectively.

Fig. S2 Control study depicting (a) the electrochemical response study of the rGO/gSPE against TNF- α . (b) A linear correlation plot of the rGO/gSPE sensor demonstrates the relationship between peak currents and TNF- α concentrations.

TNF-α	Peak current (µA) recorded	Peak current (µA) recorded	RSD %	Recovery %
concentrations	for standard TNF-α	for artificial saliva spiked		
		ΤΝΓ-α		
0	77.04	73.07	3.74	94.85
0.01	67.95	68.17	0.23	100.32
0.05	61.98	64.18	2.47	103.55
1	59.34	57.84	1.81	97.47
20	54.19	53.72	0.62	99.13
40	50.74	50.16	0.81	98.86
60	48.13	46.89	1.85	97.42
80	46.86	44.23	4.08	94.39
100	43.94	41.64	3.80	94.77
120	42.05	39.59	4.26	94.15
140	37.75	37.59	0.30	99.58
160	36.62	35.88	1.44	97.98
180	35.22	34.7	1.05	98.52
200	33.49	33.8	0.65	100.92

Table. S2: A spiked sample analysis of the BSA/anti-TNF- α /L-cys_rGO hydrogel/gSPE

immunosensor utilizing distinct TNF-α biomarker concentrations in artificial saliva sample