Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

#### **Supplementary Information**

# Engineering of Redox-triggered Polymeric Lipid Hybrid Nanocarriers for Selective Drug Delivery to Cancer Cells

B. Siva Lokesh a,c,#, Suresh Ajmeera a,d,e,#, Rajat Choudhary a,c, Sanjaya Kumar Moharana b,c,
C. S. Purohit b,c, V Badireenath Konkimalla a,c,\*

<sup>a</sup> School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India

<sup>b</sup> School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India

<sup>c</sup> Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

<sup>d</sup> Hasselt University, Institute for Materials Research (IMO), Nano-Biophysics and Soft Matter Interfaces (NSI), Wetenschapspark 1, 3590 Diepenbeek, Belgium

<sup>e</sup> IMEC, associated lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium

\* Corresponding Author

# Equal Contribution

## \* Corresponding author:

### Dr. V Badireenath Konkimalla

School of Biological Sciences,

National Institute of Science Education & Research (NISER), PO- Bhimpur-Padanpur, Via-

Jatni, District: - Khurda, Bhubaneswar, Orissa - 752 050, INDIA

E-mail: badireenath@niser.ac.in (V.B. Konkimalla)

Tel: +91-674-249 42 11



**Fig. S1.** <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum of tosylated PEG (A and B), PEG diazide (C and D), and <sup>1</sup>H NMR (E), and FTIR spectrum of PEG diamine (F)



Fig. S2. Mass spectrum of Cholesterol-Dithiodipropionate (A) and PEG Diamine (B)



**Fig. S3.** Confirmatory study for the detection of BBR in BBR-loaded RS-PLHNCs by UV-Visible spectroscopy (A). FTIR spectra of free polymers and excipients i.e. PF-127, PNIPAM, PEGDA, disulfide cholesterol, DPPC, and stearic acid (B).



**Fig. S4.** Graphical illustration of the release kinetics of BBR from the nanocarrier system following a particular model (BBR NP-17 (A-D) and BBR NP-18 (E-H))

**Table S1.** Kinetic models of dissolution release profile of Berberine from the RS-PLHNCs (n=3)

|             |        | BBR    | NP-17  |        | BBR NP-18 |        |        |        |
|-------------|--------|--------|--------|--------|-----------|--------|--------|--------|
| Models      | pH 7.4 | pH 7.4 | рН 4.5 | pH 4.5 | pH 7.4    | pH 7.4 | pH 4.5 | pH 4.5 |
|             |        | +      |        | +      |           | +      |        | +      |
|             |        | 10mM   |        | 10mM   |           | 10mM   |        | 10mM   |
|             |        | GSH    |        | GSH    |           | GSH    |        | GSH    |
| Zero order  | 0.675  | 0.827  | 0.760  | 0.688  | 0.750     | 0.868  | 0.799  | 0.643  |
| First order | 0.430  | 0.507  | 0.453  | 0.393  | 0.566     | 0.543  | 0.416  | 0.370  |
| Higuchi     | 0.901* | 0.944* | 0.934* | 0.924* | 0.879*    | 0.953* | 0.974* | 0.902* |
| Hixson-     | 0.708  | 0.947* | 0.887  | 0.859  | 0.769     | 0.961* | 0.951* | 0.805  |
| Crowell     |        |        |        |        |           |        |        |        |
| Korsmeyer   | 0.449  | 0.539  | 0.472  | 0.393  | 0.759     | 0.672  | 0.401  | 0.361  |
| Peppas      |        |        |        |        |           |        |        |        |

(\* denotes the best  $R^2$  value of nanocarriers following a particular model)



**Fig. S5.** Stability studies of BBR-loaded RS-PLHNCs (BBR NP-**17** and **18**) for 180 days at 4°C. Representative graph illustrates the changes in particle size (A), PDI (B), and zeta potential (C) occurred during the storage period.



**Fig. S6.** Quantitative analysis of intracellular GSH levels in BEAS-2B, HEK293A, and H1975 cells (A). All the values are expressed in mean  $\pm$  SEM (n=6). A one way ANOVA multiple comparison test was used to compare the intracellular GSH level difference between normal cells (BEAS-2B & HEK293A cells), and cancer cells (H1975 cells).

Half maximal inhibitory graphs after the incubation of BBR NP-17 (B (i)) and BBR NP-18 (B (ii)) for 24 and 72 h in BEAS-2B, HEK293A and H1975 cells.

#### **Abbreviations:**

H: H1975 (lung cancer cell line). BBR NP-17-H: H1975 cells treated with BBR NP-17 nanocarriers, BBR NP-18-H: H1975 cells treated with BBR NP-18 nanocarriers, BBR FR-H: refers to H1975 cells treated with free form of BBR.

**B: BEAS-2B** (normal lung epithelial cells). **BBR NP-17-B:** BEAS-2B cells treated with BBR NP-17 nanocarriers, **BBR NP-18-B:** BEAS-2B cells treated with BBR NP-18 nanocarriers. **BBR FR-B:** refers to BEAS-2B cells treated with free form of BBR.

K: HEK293A (normal human embryonic kidney cells). BBR NP-17-K: HEK293A cells treated with BBR NP-17 nanocarriers, BBR NP-18-K: HEK293A cells treated with BBR NP-18 nanocarriers. BBR FR-K: refers to HEK293A cells treated with free form of BBR.



Fig. S7. Biocompatibility studies of BLK NP-17 and 18 in BEAS-2B, HEK293A, and H1975 cells. (data represented as mean  $\pm$  SEM, n=5). Difference in p values \*p<0.05, \*\*p< 0.01, \*\*\*p<0.001, and \*\*\*\*p<0.0001 was considered to be statistically significant and ns-non significant.

Abbreviations: B- BEAS-2B cells. BLK NP-17-B- BEAS-2B cells treated with BLK NP-17 nanocarriers, BLK NP-18-B- BEAS-2B cells treated with BLK NP-18 nanocarriers.

K- HEK293A cells. BLK NP-17-K- HEK293A cells treated with BLK NP-17 nanocarriers, BLK NP-18-K- HEK293A cells treated with BLK NP-18 nanocarriers.

H - H1975 cancer cells. **BLK NP-17-H**- H1975 cells treated with BLK NP-17 nanocarriers, **BLK NP-18-H**- H1975 cells treated with BLK NP-18 nanocarriers.



Fig. S8. Determination of cell viability (%) by cell counting method after the incubation of H1975 cancer cells with BLK NP-17 and 18, free BBR, BBR NP-17 and 18 for 24h. A one-way ANOVA test was used to evaluate the difference in cell viability between the groups treated with free BBR and BBR-loaded RS-PLHNCs. Statistical significance: \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 and ns- non significant.



Fig. S9. Quantitative analysis of intracellular GSH levels in H1975 cancer cells after treatment with different concentrations of free BBR, BBR NP-17 and 18. All the values are expressed in mean  $\pm$  SEM (n=6). A one-way ANOVA test was employed to assess the differences in the decreased levels of intracellular GSH after treatment with free BBR and nanoparticulate form of BBR. Difference in p values \*p<0.05, \*\*p< 0.01, \*\*\*p<0.001, and \*\*\*\*p<0.0001 was considered to be statistically significant and ns-non significant







**Fig. S10.** Representative dot plots of % cell apoptosis from flow cytometry analysis. Q1 (Annexin V-FITC-/PI+) indicates necrosis, Q3 (Annexin V-FITC-/PI-) normal live cell population whereas, Q2 (Annexin V-FITC+/PI+) and Q4 (Annexin V-FITC+/PI-) represents late and early apoptosis respectively.

| Sl. No. | Gene   | Primer sequence (5'- 3') |                       | Tm    | Amplicon  |
|---------|--------|--------------------------|-----------------------|-------|-----------|
|         |        |                          |                       | (°C)  | size (bp) |
| 1.      | NOXA   | FP                       | GTGCCAGCAGACCTGAAGG   | 60.67 |           |
|         |        | RP                       | CCTGGGAGGTCCCTTCTTG   | 59.01 | 151       |
| 2       | PUMA   | FP                       | GAGCAGCACCTGGAGTCG    | 60.13 |           |
|         |        | RP                       | CTGCTCCTCTTGTCTCCGC   | 60.15 | 180       |
| 3.      | MCL-1  | FP                       | AGATGGCGTAACAAACTGGGG | 60.61 | 100       |
|         |        | RP                       | ACTCCACAAACCCATCCCAGC | 62.63 | 188       |
| 4.      | NQO1   | FP                       | AGAAACGACATCACAGGGGAG | 59.72 |           |
|         |        | RP                       | GGGCACCCCAAACCAATACA  | 60.54 | 174       |
| 5.      | TXRND1 | FP                       | TCGACCCTTCTTGCTTTGGAT | 59.65 |           |
|         |        | RP                       | AAGGAGGATGAAAACACCGGC | 60.89 | 103       |
| 6.      | HMOX1  | FP                       | GAGCTGCACCGAAGGGCT    | 62.40 |           |
|         |        | RP                       | GGTAGCGGGTATATGCGTGG  | 60.39 | 169       |
| 7.      | NFE2L2 | FP                       | TCAGCTACTCCCAGGTTGC   | 59.02 |           |
|         |        | RP                       | GGGCAAGCGACTGAAATGTA  | 58.55 | 135       |
| 8.      | GAPDH  | FP                       | ACCATCTTCCAGGAGCGAGA  | 60.32 |           |
|         |        | RP                       | GGCGGAGATGATGACCCTT   | 59.17 | 147       |

**Table S2** Sequences of the primers used for real-time PCR (FP: Forward Primer RP: ReversePrimer)