Supporting information

Fluorescent probe with serum albumin as a signal amplifier for real-time sensing of HSO₃- in solution, mitochondria of animal cells and rice roots

Manzoor Ahmad^{a.b,*}, Shagun Verma^c, Nancy Singla^a, Siloni Singh Bhadwal^c, Satwinderjeet Kaur^{c*}, Prabhpreet Singh^a, Subodh Kumar^a

- a. Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
- b. Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India
- c. Department of Botanical and Environment Sciences, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India

Figure S1: ¹ H NMR spectrum of compound 1	Page 3
Figure S2: ¹³ C NMR spectrum of compound 1	Page 3
Figure S3: ¹ H NMR spectrum of probe MGQ	Page 4
Figure S4: ¹³ C NMR spectrum of probe MGQ	Page 4
Figure S5: HRMS of probe MGQ	Page 5
Figure S6. (A) UV-Vis spectra of MGQ (10 μ M) in DMSO-water (PBS buffer, pH 7.4) binary mixtures; λ_{ex} 400 nm.	Page 5
Figure S7. (A) Fluorescence spectra of MGQ (10 μ M) in DMSO-water (PBS buffer, pH 7.4) binary mixtures; λ_{ex} 400 nm; (B) The plot of fluorescence intensity of MGQ (10 μ M) at 680 nm and 510 nm versus the fraction of water in DMSO; (C) The plot of fluorescence intensity at 680 nm against [MGQ] in PBS buffer, pH 7.4 (< 0.1% DMSO).	Page 6
Figure S8. Species distribution in titration of MGQ with BSA	Page 6
Figure S9. (A) Time dependent fluorescence spectra of MGQ (4 μ M, 1:1 EtOH PBS- buffer pH 7.4) with HSO ₃ ⁻ (40 μ M); (B) The plot of fluorescence intensity of MGQ (4 μ M) at 670 nm vs Time in 1:1 EtOH PBS-buffer	Page 7
Figure S10. (A) Time dependent UV-Vis spectra of MGQ (4 μ M, 1:1 EtOH PBS-buffer pH 7.4) with HSO ₃ ⁻ (40 μ M); (B) The plot of absorbance intensity of MGQ (4 μ M, 1:1 EtOH PBS-buffer pH 7.4) at 380 nm and 525 nm vs time with HSO ₃ ⁻ (40 μ M)	Page 7
Figure S11. (A) Fluorescence spectra of MGQ in 1:1 EtOH PBS with different concentrations of HSO_3^-	Page 8
Figure S12. (A) Time dependent Fluorescence spectra of with HSO_3^-	Page 8
Figure S13. (A) DLS spectra of MGQ in water and in water + BSA	Page 9
Figure S14 Images of HeLa cells MGQ and Lyso-tracker red and ER tracker red.	Page 9

Figure S 15: The fluorescence intensity of MGQ $(4\mu M)$ + BSA $(80 \ \mu M)$ in PBS buffer in the presence of different metal cations

S.No.	Reference	Solvent System	LOD for SA's	Response time for SA's	LOD for HSO ₃ -	Response time for HSO ₃ -	Imaging Animal cells	Imagin g Plant cells
1	Dyes and Pigments 2024, 222, 111901	DMF/Tris (v:v = 2:8, pH = 7.3	NA	NA	0.19 μM	1 min	MCF-7	NA
2	Analytica Chimica Acta 1305 (2024) 342588	PBS, 30 % DMSO, pH = 7.4	NA	NA	1.87 μM	60 min	HeLa	NA
3	Methods 225 (2024) 100–105	PBS pH 7.4	NA	NA	148.9 nM	60 min	CT-26	NA
4	J. Org. Chem. 2023, 88, 9959–9967	DMSO/PBS (V/V = 1/99, pH = 7.2	NA	NA	0.823 μΜ	6 min	HeLa	NA
5	Chem. Commun., 2021, 57, 655 658	EtOH:PBS(5: 95) pH 7.4	NA	NA	67 nM	10 s	HeLa	NA
6	Anal. Chem. 2019, 91, 11946–11951	PBS, 5% DMSO, pH = 5.5	NA	NA	20.7nM	200 s	HeLa	NA
7	ACS Omega 2018, 3, 11831–11837	PBS, 1% DMSO, pH 7.4	NA	NA	0.1 µM	5 min	HepG2	NA
8	Sens. Actuators, B, 2017, 243, 51– 58.	PBS/DMF = 9 : 1, pH 7.4	NA	NA	87 nM	NA	HeLa	NA
9	J. Mater. Chem. B, 2017, 5, 3862- 3869	PBS buffer of pH 7.4.	NA	NA	22 nM	1 min	HepG2	NA
10	ACS Omega 2023, 8, 2639–2647	99.9% PBS 50 μM HSA	4 to 45nM	20 to 90 min.	10 nM	30 s	MCF-7	NA
11	Anal. Chem. 2020, 92, 16130–16137	PBS, 0.3 μM HSA, pH 7.4	0.228 nM	3 min	1.4 μM	5 min	HeLa	NA
12	Sensors and Actuators B 267 (2018) 104–110	PBS, 1% DMSO, HSA (5 μM), pH 7.4	NA	NA	99 nM	10 min	MCF-7	NA
13	Current work	PBS buffer, pH 7.4, BSA(80 μM)	10 nM	$\leq 1 \min$	4 nM	1.5 min	HeLA	Roots

Table S.I : Comparison of probe MGQ with recently published probes for the detection of HSO₃-

Figure S1: ¹H NMR spectrum of compound 1

Figure S2: ¹³C NMR spectrum of compound 1

Figure S3: ¹HNMR spectrum of probe MGQ

Figure S4: ¹³CNMR spectrum of probe MGQ

Figure S5: HRMS of probe MGQ

Figure S6. UV-Vis spectra of MGQ (10 μ M) in DMSO-water (PBS buffer, pH 7.4) binary mixtures; λ_{ex} 400 nm.

Figure S7. (A) Fluorescence spectra of MGQ (10 μ M) in DMSO-water (PBS buffer, pH 7.4) binary mixtures; λ_{ex} 400 nm; (B) The plot of fluorescence intensity of MGQ (10 μ M) at 680 nm and 510 nm versus the fraction of water in DMSO; (C) The plot of fluorescence intensity at 680 nm against [MGQ] in PBS buffer, pH 7.4 (< 0.1% DMSO).

Figure S8. Species distribution in titration of MGQ with BSA

Figure S9. (A) Time dependent UV-Vis spectra of MGQ (4 μ M, 1:1 EtOH PBS-buffer pH 7.4) with HSO₃⁻ (40 μ M); (B) The plot of absorbance intensity of MGQ (4 μ M, 1:1 EtOH PBS-buffer pH 7.4) at 380 nm and 525 nm vs time with HSO₃⁻ (40 μ M)

Figure S10. (A) Time dependent fluorescence spectra of MGQ (4 μ M, 1:1 EtOH PBS-buffer pH 7.4) with HSO₃⁻ (40 μ M); (B) The plot of fluorescence intensity of MGQ (4 μ M) at 670 nm vs Time in 1:1 EtOH PBS-buffer

Figure S11. (A) Fluorescence spectra of MGQ (4 μ M, 1:1 EtOH PBS-buffer pH 7.4) with different concentrations of HSO₃⁻; (B) Plot of fluorescence intensity at 520 nm and 670 nm vs [HSO₃⁻]

Figure S12. (A) Time dependent Fluorescence spectra of MGQ (4 μ M, BSA (80 μ M) buffer pH 7.4) with HSO₃⁻ (50 μ M); (B) Time dependent plot of fluorescence intensity at 510 nm and 640 nm vs time (min.)

Figure S13. (A) DLS spectra of MGQ (4 μ M) in 99.9% (B) DLS spectra of MGQ (4 μ M) in 99.9% containing 80 μ M of BSA.

Figure S14 Images of HeLa cells on incubation with, (D_1 to D_4) HSA (50 μ M) for 3 h and then with MGQ (10 μ M) and Lyso-tracker green (500 nM) for 1 h; (E_1 to E_4) HSA (50 μ M) for 3 h and then with MGQ (10 μ M), ER tracker green (500 nM) for 1h. LASER 405 nm, 488 nm

Figure S 15: The fluorescence intensity of MGQ (4 μ M) + BSA (80 μ M) in PBS buffer in the presence of different metal cations ; Ag⁺, Al⁺³, Cd⁺², Co⁺² Cr⁺³, Cs⁺, Fe⁺², Fe⁺³, Hg⁺², Mg⁺², Ni⁺², Pb⁺², Pd⁰, Sn⁺², Zn⁺² and Pd⁺² (each 40 μ M)